Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Software for enhanced video capsule endoscopy: challenges for essential progress

Key Points

  • Computational software can enhance the diagnostic yield of video capsule endoscopy (VCE), both in terms of efficiency and accuracy

  • Despite increasing activity in information technology (IT) research worldwide, the translation of this information to clinical practice has been limited

  • The development of intelligent software systems requires close collaboration between medical and IT scientists at a laboratory level

  • Public sharing of anonymized and annotated VCE image and video data is essential

Abstract

Video capsule endoscopy (VCE) has revolutionized the diagnostic work-up in the field of small bowel diseases. Furthermore, VCE has the potential to become the leading screening technique for the entire gastrointestinal tract. Computational methods that can be implemented in software can enhance the diagnostic yield of VCE both in terms of efficiency and diagnostic accuracy. Since the appearance of the first capsule endoscope in clinical practice in 2001, information technology (IT) research groups have proposed a variety of such methods, including algorithms for detecting haemorrhage and lesions, reducing the reviewing time, localizing the capsule or lesion, assessing intestinal motility, enhancing the video quality and managing the data. Even though research is prolific (as measured by publication activity), the progress made during the past 5 years can only be considered as marginal with respect to clinically significant outcomes. One thing is clear—parallel pathways of medical and IT scientists exist, each publishing in their own area, but where do these research pathways meet? Could the proposed IT plans have any clinical effect and do clinicians really understand the limitations of VCE software? In this Review, we present an in-depth critical analysis that aims to inspire and align the agendas of the two scientific groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of state-of-the-art software-based methods for video capsule endoscopy.
Figure 2: Capsule localization methods implemented in software.
Figure 3: Example of the content-based image or video retrieval concept for video capsule endoscopy.
Figure 4: Scientific publication activity on video capsule endoscopy based on analytics from 4,870 articles in the Scopus database.
Figure 5: Comparison of results from studies detecting abnormalities that are discussed in this Review and the results reported between 2000 and 2010.12

Similar content being viewed by others

References

  1. Wang, A. et al. Wireless capsule endoscopy. Gastrointest. Endosc. 78, 805–815 (2013).

    Article  PubMed  Google Scholar 

  2. Fisher, L. R. & Hasler, W. L. New vision in video capsule endoscopy: current status and future directions. Nat. Rev. Gastroenterol. Hepatol. 9, 392–405 (2012).

    Article  PubMed  Google Scholar 

  3. Ciuti, G., Menciassi, A. & Dario, P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).

    Article  PubMed  Google Scholar 

  4. Koulaouzidis, A., Rondonotti, E. & Karargyris, A. Small-bowel capsule endoscopy: a ten-point contemporary review. World J. Gastroenterol. 19, 3726–3746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lo, S. K. How should we do capsule reading? Tech. Gastrointest. Endosc. 8, 146–148 (2006).

    Article  Google Scholar 

  6. Eliakim, R. & Magro, F. Imaging techniques in IBD and their role in follow-up and surveillance. Nat. Rev. Gastroenterol. Hepatol. 11, 722–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, Y., Hawkins, L., Wolff, J., Goloubeva, O. & Goldberg E. Detection of lesions during capsule endoscopy: physician performance is disappointing. Am. J. Gastroenterol. 107, 554–560 (2012).

    Article  PubMed  Google Scholar 

  8. Rondonotti, E. et al. Can we improve the detection rate and interobserver agreement in capsule endoscopy? Dig. Liver Dis. 44, 1006–1011 (2012).

    Article  PubMed  Google Scholar 

  9. Lewis, B., Eisen, G. & Friedman, S. A pooled analysis to evaluate results of capsule endoscopy trials. Endoscopy 39, 303–308 (2005).

    Article  Google Scholar 

  10. Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Magoulas, G. D. & Theofanous, N. Tumor recognition in endoscopic video images using artificial neural network architectures. In Proc. 26th Euromicro Conference Vol. 2, 423–429 (2000).

    Google Scholar 

  11. Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras, D. A. & Tzivras, M. Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. Inf. Technol. Biomed. 7, 141–152 (2003).

    Article  PubMed  Google Scholar 

  12. Liedlgruber, M. & Uhl, A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev. Biomed. Eng. 4, 73–88 (2011).

    Article  PubMed  Google Scholar 

  13. Fisher, M. & Mackiewicz, M. in Color Medical Image Analysis Vol. 6 (eds Celebi, M. E. & Schaefer, G.) 129–144 (Springer, 2013).

    Book  Google Scholar 

  14. Bovik, A. C. Handbook of Image and Video Processing (Academic Press, 2010).

    Google Scholar 

  15. Nixon, M., Nixon, M. S. & Aguado, A. S. Feature Extraction and Image Processing for Computer Vision (Academic Press, 2012).

    Google Scholar 

  16. Theodoridis, S. & Koutroumbas, K. Pattern Recognition (Academic Press, 2008).

    Google Scholar 

  17. Iakovidis, D. K. & Koulaouzidis, A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest. Endosc. 80, 877–883 (2014).

    Article  PubMed  Google Scholar 

  18. Iakovidis, D. K. Software engineering applications in gastroenterology. Global J. Gastroenterol. Hepatol. 2, 11–18 (2014).

    Article  Google Scholar 

  19. Rockey, D. C. Occult and obscure gastrointestinal bleeding: causes and clinical management. Nat. Rev. Gastroenterol. Hepatol. 7, 265–279 (2010).

    Article  PubMed  Google Scholar 

  20. Buscaglia, J. M. et al. Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6, 298–301 (2008).

    Article  PubMed  Google Scholar 

  21. Park, S. C. et al. Sensitivity of the suspected blood indicator: an experimental study. World J. Gastroenterol. 18, 4169–4174 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. D'Halluin, P. N. et al. Does the “Suspected Blood Indicator” improve the detection of bleeding lesions by capsule endoscopy? Gastrointest. Endosc. 61, 243–249 (2005).

    Article  PubMed  Google Scholar 

  23. Boulougoura, M., Wadge, E, Kodogiannis, V. & Chowdrey, H. S. Intelligent systems for computer-assisted clinical endoscopic image analysis. In Proc. 2nd IASTED International Conference on Biomedical Engineering 405–408 (2004).

    Google Scholar 

  24. Lv, G., Yan, G. & Wang, Z. Bleeding detection in wireless capsule endoscopy images based on color invariants and spatial pyramids using support vector machines. In Engineering in Medicine and Biology Society, EMBC, Annual International Conference of the IEEE 6643–6646 (2011).

    Google Scholar 

  25. Sainju, S., Bui, F. M. & Wahid, K. A. Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 38, 25 (2014).

    Article  PubMed  Google Scholar 

  26. Fu, Y., Zhang, W., Mandal, M. & Meng, M. Q. Computer-aided bleeding detection in WCE video. IEEE J. Biomed. Health Inform. 18, 636–642 (2014).

    Article  PubMed  Google Scholar 

  27. Hwang S., Oh, J., Cox, J., Tang, S. J. & Tibbals, H. F. Blood detection in wireless capsule endoscopy using expectation maximization clustering. In Proc. SPIE: Medical Imaging 61441P–61441P (2006).

    Google Scholar 

  28. Jung, Y. S. et al. Automatic patient-adaptive bleeding detection in a capsule endoscopy. In Proc. SPIE: Medical Imaging 72603T–72603T (2009).

    Google Scholar 

  29. Mäenpää, T. & Pietikäinen, M. Classification with color and texture: jointly or separately? Pattern Recognit. 37, 1629–1640 (2004).

    Article  Google Scholar 

  30. Mackiewicz, M. W., Fisher, M. & Jamieson, C. Bleeding detection in wireless capsule endoscopy using adaptive colour histogram model and support vector classification. In Proc. SPIE Medical Imaging 69140R–69140R (2008).

    Google Scholar 

  31. Szczypinski, P., Klepaczko, A., Pazurek, M. & Daniel, P. Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Comput. Methods Programs Biomed. 113, 396–411 (2014).

    Article  PubMed  Google Scholar 

  32. Pan G., Yan G., Qiu X. & Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J. Med. Syst. 35, 1477–1484 (2011).

    Article  PubMed  Google Scholar 

  33. Figueiredo, I. N., Kumar, S., Leal, C. & Figueiredo, P. N. Computer-assisted bleeding detection in wireless capsule endoscopy images. Comput. Methods Biomechan. Biomed. Eng. Imaging Vis. 1, 198–210 (2013).

    Article  Google Scholar 

  34. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Letters 27, 861–874 (2006).

    Article  Google Scholar 

  35. Alotaibi, S., Qasim, S., Bchir, O. & Ismail, M. M. Empirical comparison of visual descriptors for multiple bleeding spots recognition in wireless capsule endoscopy video. Computer Analysis Images Patterns 8048, 402–407 (2013).

    Article  Google Scholar 

  36. Karargyris, A. & Bourbakis, N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans. Biomed. Eng. 58, 2777–2786 (2011).

    Article  PubMed  Google Scholar 

  37. Tanaka, M. et al. A new instrument for measurement of gastrointestinal mucosal color. Dig. Endosc. 8, 139–146 (1996).

    Article  Google Scholar 

  38. Kudo, S. et al. Colonoscopic diagnosis and management of nonpolypoid early colorectal cancer. World J. Surg. 24, 1081–1090 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Maroulis, D. E., Iakovidis, D. K., Karkanis, S. A. & Karras, D. A. CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames. Comput. Methods Programs Biomed. 70, 151–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Häfner, M. et al. Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps. Pattern Recognit. 42, 1180–1191 (2009).

    Article  Google Scholar 

  41. Cui, L. et al. Detection of lymphangiectasia disease from wireless capsule endoscopy images with adaptive threshold. In Proc. 8th World Congress on Intelligent Control and Automation 3088–3093 (2010).

    Google Scholar 

  42. Ciaccio, E. J., Tennyson, C. A., Bhagat, G., Lewis, S. K. & Green, P. H. Classification of videocapsule endoscopy image patterns: Comparative analysis between patients with celiac disease and normal individuals. Biomed. Eng. Online 9, 44 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saurin, J. C. et al. Diagnostic value of endoscopic capsule in patients with obscure digestive bleeding: blinded comparison with video push-enteroscopy. Endoscopy 35, 576–584 (2003).

    Article  PubMed  Google Scholar 

  44. Romain, O. et al. Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer. In Proc. 13th International Conference on Bioinformatics and Bioengineering 1–6 (2013).

    Google Scholar 

  45. Li, B. P. & Meng, M. Q. Comparison of several texture features for tumor detection in CE images. J. Med. Syst. 36, 2463–2469 (2012).

    Article  PubMed  Google Scholar 

  46. Charisis, V. S., Hadjileontiadis, L. J., Liatsos, C. N., Mavrogiannis, C. C. & Sergiadis, G. D. Capsule endoscopy image analysis using texture information from various colour models. Comput. Methods Programs Biomed. 107, 61–74 (2012).

    Article  PubMed  Google Scholar 

  47. Chen, G., Bui, T. D., Krzyzak, A. & Krishnan, S. Small bowel image classification based on Fourier-Zernike moment features and canonical discriminant analysis. Pattern Recognit. Image Analysis 23, 211–216 (2013).

    Article  Google Scholar 

  48. Li, B. & Meng, M. Q. Automatic polyp detection for wireless capsule endoscopy images. Expert Syst. Appl. 39, 10952–10958 (2012).

    Article  Google Scholar 

  49. Li, B. & Meng, M. Q. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans. Inf. Technol. Biomed. 16, 323–329 (2012).

    Article  PubMed  Google Scholar 

  50. Li, B., Meng, M. Q. & Lau, J. Y. Computer-aided small bowel tumor detection for capsule endoscopy. Artif. Intell. Med. 52, 11–16 (2011).

    Article  PubMed  Google Scholar 

  51. Chen, H., Chen, J., Peng Q., Sun G. & Gan T. Automatic hookworm image detection for wireless capsule endoscopy using hybrid color gradient and contourlet transform. In Proc. 6th International Conference on Biomedical Engineering and Informatics 116–120 (2013).

    Google Scholar 

  52. Yu, L., Yuen, P. C. & Lai, J. Ulcer detection in wireless capsule endoscopy images. In Proc. 21st International Conference on Pattern Recognition 45–48 (2012).

    Google Scholar 

  53. Hwang, S. Bag-of-visual-words approach to abnormal image detection in wireless capsule endoscopy videos. Advances Visual Computing 6939, 320–327 (2011).

    Google Scholar 

  54. Chen, Y. & Lee, J. Ulcer detection in wireless capsule endoscopy video. In Proc. 20th ACM International Conference on Multimedia 1181–1184 (2012).

    Chapter  Google Scholar 

  55. Sikora, T. The MPEG-7 visual standard for content description-an overview. IEEE Trans. Circuits Syst. Video Technol. 11, 696–702 (2001).

    Article  Google Scholar 

  56. Kumar, R. et al. Assessment of Crohn's disease lesions in wireless capsule endoscopy images. IEEE Trans. Biomed. Eng. 59, 355–362 (2012).

    Article  PubMed  Google Scholar 

  57. David, E., Boia, R., Malaescu, A. & Carnu, M. Automatic colon polyp detection in endoscopic capsule images. In Proc. International Symposium on Signals, Circuits and Systems 1–4 (2013).

    Google Scholar 

  58. Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N. & Tsai, Y. H. Automated polyp detection in colon capsule endoscopy. IEEE Trans. Biomed. Eng. 33, 1488–1502 (2014).

    Google Scholar 

  59. Iakovidis, D., Tsevas, S., Maroulis D. & Polydorou, A. Unsupervised summarisation of capsule endoscopy video. In Proc. 4th International IEEE Conference Vol. 1, 3–15 (2008).

    Google Scholar 

  60. Iakovidis, D. K., Tsevas, S. & Polydorou, A. Reduction of capsule endoscopy reading times by unsupervised image mining. Comput. Med. Imaging Graph. 34, 471–478 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, Q. & Meng, M. H. A strategy to abstract WCE video clips based on LDA. In Proc. IEEE International Conference on Robotics and Automation 4145–4150 (2011).

    Google Scholar 

  62. Yuan, Y. & Meng, M. Q. Hierarchical key frames extraction for WCE video. In Proc. IEEE International Conference on Mechatronics and Automation 225–229 (2013).

    Google Scholar 

  63. Ismail, M., Bchir, O. & Emam, A. Z. Endoscopy video summarization based on unsupervised learning and feature discrimination. IEEE Xplore [online], (2013).

    Google Scholar 

  64. Fan, Y., Meng, M. H. & Li, B. A novel method for informative frame selection in wireless capsule endoscopy video. In Proc. Annual International Conference of the IEEE: Engineering in Medicine and Biology Society 4864–4867 (2011).

    Google Scholar 

  65. HajiMaghsoudi, O., Talebpour, A., Soltanian-Zadeh, H. & Soleimani, H. A. Automatic informative tissue's discriminators in WCE. In Proc. IEEE International Conference on Imaging Systems and Techniques 18–23 (2012).

    Chapter  Google Scholar 

  66. Segui, S. et al. Categorization and segmentation of intestinal content frames for wireless capsule endoscopy. IEEE Trans. Inf. Technol. Biomed. 16, 1341–1352 (2012).

    Article  PubMed  Google Scholar 

  67. Sun, Z., Li, B., Zhou, R., Zheng, H. & Meng, M. Q. Removal of non-informative frames for wireless capsule endoscopy video segmentation. In Proc. IEEE International Conference on Automation and Logistics 294–299 (2012).

    Google Scholar 

  68. Fu, Y. et al. Key-frame selection in WCE video based on shot detection. In Proc. 10th World Congress on Intelligent Control and Automation 5030–5034 (2012).

    Chapter  Google Scholar 

  69. Liu, H. et al. Wireless capsule endoscopy video reduction based on camera motion estimation. J. Digi. Imaging 26, 287–301 (2013).

    Article  Google Scholar 

  70. Lee, H. G., Choi, M. K., Shin, B. S. & Lee, S. C. Reducing redundancy in wireless capsule endoscopy videos. Comput. Biol. Med. 43, 670–682 (2013).

    Article  PubMed  Google Scholar 

  71. Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008).

    Article  Google Scholar 

  72. Chen, Y., Lan, Y. & Ren, H. Trimming the wireless capsule endoscopic video by removing redundant frames. In Proc. 8th International Conference on Wireless Communications, Networking and Mobile Computing 1–4 (2012).

    Google Scholar 

  73. Mackiewicz, M., Berens, J. & Fisher, M. Wireless capsule endoscopy color video segmentation. IEEE Trans. Med. Imaging 27, 1769–1781 (2008).

    Article  PubMed  Google Scholar 

  74. Cunha, J. S., Coimbra, M., Campos, P. & Soares, J. M. Automated topographic segmentation and transit time estimation in endoscopic capsule exams. IEEE Trans. Med. Imaging 27, 19–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Gallo, G. & Granata, E. WCE video segmentation using textons. Proc. SPIE http://dx.doi.org/10.1117/12.840690.

  76. Given Imaging Wireless capsule endoscopy software [online], (2014).

  77. Koulaouzidis, A., Iakovidis, D. K., Karargyris, A. & Plevris, J. N. Optimizing lesion detection in small-bowel capsule endoscopy: from present problems to future solutions. Expert Rev. Gastroenterol. Hepatol. 9, 217–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Günther, U., Daum, S., Zeitz, M. & Bojarski, C. Capsule endoscopy: comparison of two different reading modes. Int. J. Colorectal Dis. 27, 521–525 (2012).

    Article  PubMed  Google Scholar 

  79. Koulaouzidis, A., Smirnidis, A., Douglas, S. & Plevris, J. N. QuickView in small-bowel capsule endoscopy is useful in certain clinical settings, but QuickView with Blue Mode is of no additional benefit. Eur. J. Gastroenterol. Hepatol. 24, 1099–1104 (2012).

    Article  PubMed  Google Scholar 

  80. Vu, H. et al. Controlling the display of capsule endoscopy video for diagnostic assistance. IEICE Trans. Inf. Syst. 92, 512–528 (2009).

    Article  Google Scholar 

  81. Chu, X. et al. Epitomized summarization of wireless capsule endoscopic videos for efficient visualization. Med. Image Comput. Comput. Assist. Interv. 13, 522–529 (2010).

    PubMed  Google Scholar 

  82. Iakovidis, D. K, Spyrou, E. & Diamantis, D. Efficient homography-based video visualization for wireless capsule endoscopy. In Proc. 13th International Conference on Bioinformatics and Bioengineering 1–4 (2013).

    Google Scholar 

  83. Szeliski, R. Image alignment and stitching: a tutorial. Foundations Trends Computer Graphics Vision. 2, 1–104 (2006).

    Article  Google Scholar 

  84. Than, T. D., Alici, G., Zhou, H. & Li, W. A review of localization systems for robotic endoscopic capsules. IEEE Trans. Biomed. Eng. 59, 2387–2399 (2012).

    Article  PubMed  Google Scholar 

  85. Li, X., Chen, H., Dai, J., Gao, Y. & Ge, Z. Predictive role of capsule endoscopy on the insertion route of double-balloon enteroscopy. Endoscopy 41, 762–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Pedersen, P. B., Bar-Shalom, D., Baldursdottir, S., Vilmann, P. & Müllertz, A. Feasibility of capsule endoscopy for direct imaging of drug delivery systems in the fasted upper-gastrointestinal tract. Pharm. Res. 31, 1–10 (2014).

    Article  CAS  Google Scholar 

  87. van der Stap N., van der Heijden, F. & Broeders, I. A. Towards automated visual flexible endoscope navigation. Surg. Endosc. 27, 3539–3547 (2013).

    Article  PubMed  Google Scholar 

  88. Marya, N., Karellas, A., Foley, A., Roychowdhury, A. & Cave, D. Computerized 3-dimensional localization of a video capsule in the abdominal cavity: validation by digital radiography. Gastrointest. Endosc. 79, 669–674 (2014).

    Article  PubMed  Google Scholar 

  89. Scaramuzza, D. & Fraundorfer, F. Visual odometry [tutorial]. IEEE Robotics & Automation Magazine 18, 80–92 (2011).

    Article  Google Scholar 

  90. Berens, J., Mackiewicz, M. & Bell, D. Stomach, intestine, and colon tissue discriminators for wireless capsule endoscopy images. Proc. SPIE 5747, Medical Imaging Image Processing http://dx.doi.org/10.1117/12.594799.

  91. Vu, H. et al. Color analysis for segmenting digestive organs in VCE. In Proc. 20th International Conference on Pattern Recognition (ICPR) 2468–2471 (2010).

    Google Scholar 

  92. Marques, N., Dias, E., Cunha, J. & Coimbra, M. Compressed domain topographic classification for capsule endoscopy. In Proc. Engineering in Medicine and Biology Society, EMBC, Annual International Conference of the IEEE 6631–6634 (2011).

    Google Scholar 

  93. Shen, Y., Guturu, P. & Buckles, B. P. Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features. IEEE Trans. Inf. Technol. Biomed. 16, 98–105 (2012).

    Article  PubMed  Google Scholar 

  94. Zhou, R., Li, B., Zhu, H. & Meng, M. Q. A novel method for capsule endoscopy video automatic segmentation. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3096–3101 (2013).

    Google Scholar 

  95. Nistér, D., Naroditsky, O. & Bergen J. Visual odometry. In Proc. IEEE Computer Society Conference 1–652 (2004).

    Google Scholar 

  96. Karargyris, A. & Koulaouzidis, A. Capsule-odometer: a concept to improve accurate lesion localisation. World J. Gastroenterol. 19, 5943 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Karargyris, A. & Koulaouzidis. A. OdoCapsule: next generation wireless capsule endoscopy with accurate localization and video stabilization. IEEE Trans. Biomed. Eng. http://dx.doi.org/10.1109/TBME.2014.2352493.

  98. Szczypinski, P. M., Sriram, R. D., Sriram, P. V. & Reddy, D. N. A model of deformable rings for interpretation of wireless capsule endoscopic videos. Med. Image Anal. 13, 312–324 (2009).

    Article  PubMed  Google Scholar 

  99. Liu, L., Hu, C., Cai, W. & Meng, M. H. Capsule endoscope localization based on computer vision technique. In Proc. Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE 3711–3714 (2009).

    Chapter  Google Scholar 

  100. Bao, G., Ye, Y., Khan, U., Zheng, X. & Pahlavan, K. Modeling of the movement of the endoscopy capsule inside GI tract based on the captured endoscopic images. In Proc. IEEE International Conference on Modeling, Simulation and Visualization Methods, MSV Vol. 12 (2012).

    Google Scholar 

  101. Spyrou, E. & Iakovidis, D. K. Video-based measurements for wireless capsule endoscope tracking. Meas. Sci. Technol. 25, 015002 (2014).

    Article  CAS  Google Scholar 

  102. Bao, G., Mi, L. & Pahlavan, K. Emulation on motion tracking of endoscopic capsule inside small intestine. In Proc. 14th International Conference on Bioinformatics and Computational Biology, Las Vegas (2013).

    Google Scholar 

  103. Bao, G. & Pahlavan, K. Motion estimation of the endoscopy capsule using region-based Kernel SVM classifier. In Proc. IEEE International Conference on Electro/Information Technology (EIT) 1–5 (2013).

    Google Scholar 

  104. Talley, N. J. Decade in review—FGIDs: 'Functional' gastrointestinal disorders—a paradigm shift. Nat. Rev. Gastroenterol. Hepatol. 11, 649–650 (2014).

    Article  PubMed  Google Scholar 

  105. Rodriguez, L. & Nurko, S. in Clinical Management of Intestinal Failure (eds Duggan, C. P., Gura, K. M. & Jaksic, T.) 31 (2011).

    Book  Google Scholar 

  106. Lee, Y. Y., Erdogan, A. & Rao, S. S. How to assess regional and whole gut transit time with wireless motility capsule. J. Neurogastroenterol. Motil. 20, 265–270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malagelada, C. et al. New insight into intestinal motor function via noninvasive endoluminal image analysis. Gastroenterology 135, 1155–1162 (2008).

    Article  PubMed  Google Scholar 

  108. Kellow, J. E. et al. Principles of applied neurogastroenterology: physiology/motility–sensation. Gut 45, (Suppl. 2), II17–II24 (1999).

    PubMed  PubMed Central  Google Scholar 

  109. Hansen, M. Small intestinal manometry. Physiol. Res. 51, 541–556 (2002).

    CAS  PubMed  Google Scholar 

  110. Spyridonos, P., Vilariño, F., Vitria, J. & Radeva, P. in Advanced Concepts for Intelligent Vision Systems (eds Blanc-Talon, J., Philips, W., Popescu, D. & Scheunders, P.) 531–537 (Springer, 2005).

    Book  Google Scholar 

  111. Vilarino, F. et al. Intestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractions. IEEE Trans. Med. Imaging 29, 246–259 (2010).

    Article  PubMed  Google Scholar 

  112. Segui, S. et al. Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images. IEEE J. Biomed. Health Inform. 18, 1831–1838 (2014).

    Article  PubMed  Google Scholar 

  113. Drozdzal, M. et al. Adaptable image cuts for motility inspection using WCE. Comput. Med. Imaging Graph. 37, 72–80 (2013).

    Article  PubMed  Google Scholar 

  114. Li, B. & Meng, M. Q. Wireless capsule endoscopy images enhancement via adaptive contrast diffusion. J. Vis. Commun. Image Represent. 23, 222–228 (2012).

    Article  Google Scholar 

  115. Ramaraj, M., Raghavan, S. & Khan, W. A. Homomorphic filtering techniques for WCE image enhancement. In Proc. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) 1–5 (2013) (2013).

    Google Scholar 

  116. Vu, H. et al. in Abdominal Imaging Computational and Clinical Applications (eds Yoshida, H., Sakas, G. & Linguraru, M. G.) 35–43 (Springer, 2012).

    Book  Google Scholar 

  117. Okuhata, H., Nakamura, H., Hara, S., Tsutsui, H. & Onoye T. Application of the real-time Retinex image enhancement for endoscopic images. In Proc. Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE 3407–3410 (2013).

    Google Scholar 

  118. Gopi, V. P. & Palanisamy, P. Capsule endoscopic image denoising based on double density dual tree complex wavelet transform. Int. J. Imag. Robot. 9, 48–60 (2013).

    Google Scholar 

  119. Liu, H., Lu, W. S. & Meng, M. H. De-blurring wireless capsule endoscopy images by total variation minimization. In Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim) 102–106 (2011).

    Google Scholar 

  120. Karargyris, A. & Bourbakis, N. An elastic video interpolation methodology for wireless capsule endoscopy videos. In Proc. IEEE International Conference on BioInformatics and BioEngineering (BIBE) 38–43 (2010).

    Google Scholar 

  121. Häfner, M., Liedlgruber, M. & Uhl, A. POCS-based super-resolution for HD endoscopy video frames. In Proc. Computer Based Medical Systems 185–190 (2013).

    Google Scholar 

  122. Spyrou, E., Diamantis, D. & Iakovidis, D. K. Panoramic visual summaries for efficient reading of capsule endoscopy videos. In Proc. 8th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) 41–46 (2013).

    Google Scholar 

  123. Rondonotti, E. et al. Utility of 3-dimensional image reconstruction in the diagnosis of small-bowel masses in capsule endoscopy (with video). Gastroint. Endosc. 80, 642–651 (2014).

    Article  Google Scholar 

  124. Karargyris, A. & Bourbakis, N. Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation. IEEE Trans. Med. Imaging 30, 957–971 (2011).

    Article  PubMed  Google Scholar 

  125. Koulaouzidis, A. et al. Three-dimensional representation software as image enhancement tool in small-bowel capsule endoscopy: a feasibility study. Dig. Liver Dis. 45, 909–914 (2013).

    Article  PubMed  Google Scholar 

  126. d'Orazio, L. et al. Multimodal and multimedia image analysis and collaborative networking for digestive endoscopy. IRBM 35, 88–93 (2014).

    Article  Google Scholar 

  127. Genta, R. M. & Sonnenberg, A. Big data in gastroenterology research. Nat. Rev. Gastroenterol. Hepatol. 11, 386–390 (2014).

    Article  PubMed  Google Scholar 

  128. Mell, P. & Grance, T. The NIST definition of cloud computing. The ACM Digital Library [online], (2010).

    Google Scholar 

  129. Khan, T. & Wahid, K. Low-complexity colour-space for capsule endoscopy image compression. Electronics Letters 47, 1217–1218 (2011).

    Article  Google Scholar 

  130. Mehmood, I., Sajjad, M. & Baik, S. W. Video summarization based tele-endoscopy: a service to efficiently manage visual data generated during wireless capsule endoscopy procedure. J. Med. Syst. 38, 1–9 (2014).

    Article  Google Scholar 

  131. Torres, J. S., Damian Segrelles Quilis, J., Espert, I. B. & García, V. H. Improving knowledge management through the support of image examination and data annotation using DICOM structured reporting. J. Biomed. Inform. 45, 1066–1074 (2012).

    Article  PubMed  Google Scholar 

  132. Iakovidis, D., Goudas, T., Smailis, C. & Maglogiannis, I. Ratsnake: a versatile image annotation tool with application to computer-aided diagnosis. ScientificWorldJournal http://dx.doi.org/10.1155/2014/286856.

  133. Drozdzal, M. et al. in Pattern Recognition and Image Analysis (eds Vitrià, J., Sanches, J. M. & Mario Hernández, M.) 143–150 (Springer, 2011).

    Book  Google Scholar 

  134. Müller, H. & Deserno, T. M. in Biomedical Image Processing (ed. Deserno, T. M.) 471–494 (Springer, 2011).

    Google Scholar 

  135. Hu, W., Xie, N., Li, L., Zeng, X. & Maybank, S. A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. 41, 797–819 (2011).

    Article  Google Scholar 

  136. Garaiman, D. D. & Saftoiu, A. A comparative study for methods of content search in multimedia databases with endoscopic images. Current Health Sci. J. 37, 86–88 (2011).

    Google Scholar 

  137. André, B., Vercauteren, T. & Ayache, N. in Medical Content-Based Retrieval for Clinical Decision Support (eds Müller, H., Hayit Greenspan, H. & Syeda-Mahmood, T.) 12–23 (Springer, 2012).

    Book  Google Scholar 

  138. Wu, X. W., Yang, Y. B. & Yu, W. Y. Content-based medical image retrieval system for color endoscopic images. Advanced Mat. Res. 798, 1022–1025 (2013).

    Google Scholar 

  139. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Compton, C. C. et al. AJCC Cancer Staging Atlas 287–295 (Springer, 2012).

    Book  Google Scholar 

  141. Carrion, A. F., Hindi, M., Molina, E. & Barkin, J. S. Ileal lines: a marker of the ileocecal valve on wireless capsule endoscopy. Gastrointest. Endosc. 79, 871–872 (2014).

    Article  PubMed  Google Scholar 

  142. Soper, T. D., Porter, M. P. & Seibel, E. J. Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans. Biomed. Eng. 59, 1670–1680 (2012).

    Article  PubMed  Google Scholar 

  143. Rey, J. F. et al. Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointest. Endosc. 75, 373–381 (2012).

    Article  PubMed  Google Scholar 

  144. Iakovidis, D. K. et al. Towards intelligent capsules for robust wireless endoscopic imaging of the gut. In Proc. IEEE-IST Conference 95–100 (2014).

    Google Scholar 

  145. Hripcsak, G. et al. Health data use, stewardship, and governance: ongoing gaps and challenges: a report from AMIA's Health Policy 2012 Meeting. J. Am. Med. Inform Assoc. 21, 204–211 (2014).

    Article  PubMed  Google Scholar 

  146. Sliker, L. J. & Ciuti, G. Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert Rev. Med. Devices 11, 649–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Aihara, H., Ikeda, K. & Tajiri, H. Image-enhanced capsule endoscopy based on the diagnosis of vascularity when using a new type of capsule. Gastrointest. Endosc. 73, 1274–1279 (2011).

    Article  PubMed  Google Scholar 

  148. Ryu, C. B., Song, J. Y., Lee, M. S. & Shim, C. S. Does capsule endoscopy with Alice improves visibility of small bowel lesions? Gastrointest. Endosc. 77 (Suppl), AB466 (2013).

    Google Scholar 

  149. Spada, C., Hassan, C. & Costamagna, G. Virtual chromoendoscopy: will it play a role in capsule endoscopy? Dig. Liver Dis. 43, 927–928 (2011).

    Article  PubMed  Google Scholar 

  150. Given Imaging. Capsule endoscopy [online], (2014).

  151. Koulaouzidis, A. & Iakovidis, D. K. KID, a capsule endoscopy database for medical decision support [online], (2014).

  152. University of Aveiro. Capview [online], (2010).

  153. Gastrolab [online], (2014).

  154. World Endoscopy Organization. WEO Clinical Endoscopy Atlas [online], (2014).

  155. El Salvador atlas of gastrointestinal endoscopy [online], (2014).

  156. Atlas of gastroenterological endoscopy [online], (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.K.I. researched data for the article, contributed to discussion of the content, wrote the article and reviewed/edited the manuscript before submission. A.K. contributed to discussion of the content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Anastasios Koulaouzidis.

Ethics declarations

Competing interests

A.K. has received research support from Given Imaging and SynMed UK, lecture honoraria from Dr Falk Pharma UK, and travel support from Abbott, Dr Falk Pharma UK, Almirall and MSD. D.K.I. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakovidis, D., Koulaouzidis, A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 12, 172–186 (2015). https://doi.org/10.1038/nrgastro.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.13

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics