Guidance document: risk assessment of patients with cirrhosis prior to elective non-hepatic surgery =================================================================================================== * Nadir Abbas * Jonathan Fallowfield * David Patch * Adrian J Stanley * Raj Mookerjee * Emmanouil Tsochatzis * Joanna A Leithead * Peter Hayes * Abhishek Chauhan * Vikram Sharma * Neil Rajoriya * Simon Bach * Thomas Faulkner * Dhiraj Tripathi ## Abstract As a result of the increasing incidence of cirrhosis in the UK, more patients with chronic liver disease are being considered for elective non-hepatic surgery. A historical reluctance to offer surgery to such patients stems from general perceptions of poor postoperative outcomes. While this is true for those with decompensated cirrhosis, selected patients with compensated early-stage cirrhosis can have good outcomes after careful risk assessment. Well-recognised risks include those of general anaesthesia, bleeding, infections, impaired wound healing, acute kidney injury and cardiovascular compromise. Intra-abdominal or cardiothoracic surgery are particularly high-risk interventions. Clinical assessment supplemented by blood tests, imaging, liver stiffness measurement, endoscopy and assessment of portal pressure (derived from the hepatic venous pressure gradient) can facilitate risk stratification. Traditional prognostic scoring systems including the Child-Turcotte-Pugh and Model for End-stage Liver Disease are helpful but may overestimate surgical risk. Specific prognostic scores like Mayo Risk Score, VOCAL-Penn and ADOPT-LC can add precision to risk assessment. Measures to mitigate risk include careful management of varices, nutritional optimisation and where possible addressing any ongoing aetiological drivers such as alcohol consumption. The role of portal decompression such as transjugular intrahepatic portosystemic shunting can be considered in selected high-risk patients, but further prospective study of this approach is required. It is of paramount importance that patients are discussed in a multidisciplinary forum, and that patients are carefully counselled about potential risks and benefits. * CIRRHOSIS * ABDOMINAL SURGERY * PORTAL HYPERTENSION ## Introduction The increasing incidence of cirrhosis in the UK1 has driven the rise in such patients requiring non-hepatic surgery as an emergency (eg, irreducible umbilical hernia) or electively (eg, cardiac or colon cancer surgery). There has been a long-standing reticence to operate on such patients due to their perceived poor outcomes, which has potentially disadvantaged this patient group. Surgical outcomes vary considerably according to the type of surgery, type of anaesthesia and importantly the stage of liver disease, with clinically significant portal hypertension ((CSPH) defined as a hepatic venous pressure gradient (HVPG) ≥10 mm Hg) heralding the development of varices, and further progression to decompensation.2 Additionally, comorbidities such as obesity, diabetes and cardiovascular disease present further anaesthetic and surgical challenges for the growing cohort of patients with non-alcoholic fatty liver disease-related cirrhosis. The assessment of surgical risk in patients with cirrhosis is increasingly important but limited by a lack of prospective controlled data and significant heterogeneity in risk assessment pathways. Although AGA guidance on this topic has been published,3 there is no clear guidance in the UK. This position statement aims to summarise the current evidence and advise members of BSG and BASL on the current options for presurgical assessment and future directions. This guidance document has been reviewed by the BASL Portal Hypertension Special Interest Group Steering Committee, BSG Liver Section, and BSG Clinical Services and Standards Committee. ### Guidance statements 1. Patients with cirrhosis are considered high-risk candidates for non-hepatic surgery, in particular intra-abdominal and cardiothoracic procedures. The risk is highest inChild-Turcotte-Pugh (CTP)-B and C disease and correlates with the degree of portal hypertension. 2. The preoperative assessment of patients with cirrhosis being considered for non-hepatic surgery is complex and a case-by-case decision is advised. 3. Multidisciplinary assessment including hepatology, anaesthetics and surgery is advised, with involvement of other disciplines (eg, radiology, haematology or nutrition/physiotherapy) where appropriate. 4. In eligible patients, particularly those with decompensated cirrhosis, consideration should be given to deferring elective surgery until after liver transplantation where applicable. Where liver transplantation is not an option in decompensated cirrhosis, referral to palliative care services should be considered unless aetiology of cirrhosis is modifiable for example, alcohol abstinence, antiviral therapy. 5. The current bespoke prognostic scoring systems such as Mayo Risk Score, VOCAL-Penn and Adequate Operative Treatment for Liver Cirrhosis (ADOPT-LC) can be considered to aid multidisciplinary team decisions, in addition to CTP and Model for End-stage Liver Disease (MELD) score. 6. Measuring HVPG can provide additional important information and may be considered as an adjunct to other prognostic paraments where available. 7. In compensated cirrhosis, transjugular intrahepatic portosystemic shunting (TIPSS) prior to surgery can be considered in those at high risk as quantified by the presence of varices, prognostics scoring systems and/or HVPG. However, further comparative multicentre studies are urgently needed, to guide selection of patient most likely to benefit 8. Algorithm for assessment of patients with cirrhosis undergoing elective surgery is presented in figure 1. ![Figure 1](http://fg.bmj.com/https://fg.bmj.com/content/flgastro/14/5/359/F1.medium.gif) [Figure 1](http://fg.bmj.com/content/14/5/359/F1) Figure 1 Algorithm for assessment of patients with cirrhosis undergoing elective surgery. *HVPG measurement is preferable where available. **LSM applicable only in compensated cirrhosis. \***|High-risk surgery includes cardiovascular, thoracic and open abdominal surgery. \***|Low-risk surgery comprises of minimally invasive, abdominal wall and orthopaedic surgery. \**\*|\*Includes addressing individual risk factors such as alcohol intake, increased BMI, measures to improve ASA status and portal decompression, for example, TIPSS in suitable patients. \*\*\*|\*\*Only available in selected centres. ASA, American society of Anesthesiology score; BMI, body mass index; CSPH, clinically significant portal hypertension; CTP, Child-Turcotte-Pugh score; HVPG, hepatic venous pressure gradient; LSM; liver stiffness measurement; MDT, multidisciplinary team discussion; MELD, Model for End-Stage Liver Disease; OGD, oesophagogastroduodenoscopy; TIPSS, transjugular intrahepatic portosystemic shunting. ### Pre-surgery assessment Presurgery evaluation requires that we consider specific harms that may either complicate surgery or recovery from surgery. These risks should be assessed and explained to the patient, with appropriate steps put in place to mitigate where possible. History, physical examination and blood tests may reveal findings suggestive of chronic liver disease. There should be a low threshold to consider further investigations such as imaging and liver stiffness measurement where there is clinical suspicion of liver disease since patients with compensated advanced chronic liver disease can present with normal liver function tests and absence of overt clinical stigmata of chronic liver disease. A multidisciplinary assessment is strongly advised with input from hepatology, anaesthetics, surgery and other disciplines where appropriate such as radiology, haematology, nutrition and physiotherapy. The risks include: (1) general anaesthesia which could be mitigated by the use of regional techniques; (2) implied bleeding risk using traditional indices such as international normalised ratio (INR), activated partial thromboplastin time (APTT) and platelet count, which in this population do not reflect deranged haemostatic mechanisms, making an assessment of bleeding risk challenging4; (3) infection which can precipitate decompensation5; (4) compromised nutritional status with malnutrition and sarcopenia hampering postoperative recovery and wound healing6; (5) acute kidney injury precipitated by hypovolaemia due to depleted albumin, contrast agents, infection or anaesthesia6; (6) cardiovascular compromise due to stress of surgery unmasking undiagnosed cardiomyopathy.7 8 Decompensated cirrhosis (defined by ascites, encephalopathy, variceal bleeding, and/or jaundice) results in a much higher risk of poor outcomes, with increased propensity to precipitate acute on chronic liver failure postsurgery.9 In this group, an individualised decision on whether surgery can be deferred until after liver transplantation for eligible candidates should be considered. Decompensated patients with non-hepatic malignancy can be particularly challenging since pre-emptive liver transplantation is normally contraindicated. Elective surgery is absolutely contraindicated in acute liver failure, acute viral or alcoholic hepatitis and American Society of Anesthesiologists (ASA) Physical Status class V. Intra-abdominal or cardiothoracic surgical procedures are considered higher risk—the former due to the potential presence of portal hypertension, and the latter due to the adverse impact of reduced cardiac output in patients who are already vasodilated, with low blood pressure and reliant on their compensatory high cardiac output state.10 ### Specific prognostic models Most studies of prognostic models are observational or retrospective and limited by significant heterogeneity with regard to the type of surgery, severity of liver disease and whether surgery was elective or emergency. Traditional prognostic scoring systems including CTP and MELD, have an established role but can overestimate surgical risk.11 Bespoke prognostic models have also been proposed which can provide a greater precision (table 1). These include the Mayo Risk Score,12 VOCAL-Penn13 and ADOPT-LC score14 (table 1). These are all based on retrospective data, some dating back 25 years, and do not quantify the degree of portal hypertension. A recent multicentre prospective study15 found that ASA class (HR III vs II=2.98 (95% CI 0.7 to 13.2), HR IV vs II=9.97 (95% CI 2.0 to 50.4), p=0.008), high-risk surgery (HR=3.65 (95% CI 1.4 to 9.3), p=0.006) and HVPG (HR=1.14 (95% CI 1.05 to 1.25), p=0.003) were strongly predictive of 1 year mortality (C-statistic >0.8). HVPG is invasive and not widely available, but given that values >16 mm Hg (and especially ≥20 mm Hg (HR=5.67 (95% CI 2.4 to 13.2)) are independently associated with high risk of 1-year postsurgical mortality, its use, particularly in patients with compensated cirrhosis or with previous decompensation, may be considered where available. View this table: [Table 1](http://fg.bmj.com/content/14/5/359/T1) Table 1 Prognostic scores used to predict post operative outcomes in patients with chronic liver disease ### Risk associated with different types of non-hepatic surgery Patients with liver disease have high morbidity and mortality across the spectrum of surgical procedures.16 Operative risk is dependent on severity of liver disease, type and mode of surgical procedure, concomitant medical conditions, nutritional and performance status of the individual, and peri- and postoperative expertise.17 18 Studies on the outcome of patients undergoing surgery are highly variable with the majority of studies being retrospective and single-centre, and lacking detail of liver disease and appropriate quality controls17 19–22 (table 2). Emergency surgery confers an estimated 4–10 fold higher postoperative mortality.10 23–26 A systematic review by de Goede *et al* quotes general surgical risk for 30-day mortality and morbidity to be 11.6% and 30.1%, respectively.27 Presence of portal hypertension further heightens the mortality with colectomy, abdominal aortic aneurysm repair or coronary artery bypass grafting (CABG) having a 12.3-fold, 14.3-fold, 7.8-fold and 22.7-fold higher risk, respectively, when compared with patients without cirrhosis.27 View this table: [Table 2](http://fg.bmj.com/content/14/5/359/T2) Table 2 Studies with mortality and morbidity data in relation to non-hepatic surgery in patients with cirrhosis and portal hypertension, categorised by type of surgery #### Laparoscopic versus open surgery Laparoscopic surgery was deemed a relative contraindication in cirrhosis due to risk of rupturing abdominal varices but multiple studies have demonstrated favourable outcomes following this approach.28–37 It’s safety in CTP-C patients is not yet proven, hence surgery in such patients may be limited to conservative measures. In the context of cirrhosis, laparoscopic cholecystectomy has been the most common procedure assessed. In a meta-analysis of randomised controlled trials comparing laparoscopic and open cholecystectomy (n=234 patients (97% CTP-A or B)), there were no postoperative deaths and the laparoscopic approach was associated with fewer postoperative complications (p=0.03), shorter hospital stay (p<0.001) and quicker resumption of normal diet (p<0.001).29 Laparoscopic inguinal hernia repair can be performed safely32 and there are also favourable outcomes when comparing laparoscopic to open appendectomy.38 #### Colorectal surgery Colorectal surgery in cirrhosis is considered high risk with morbidity and 30-day mortality quoted between 21.5%–26% and 48%–77%, respectively.39–43 The risk is higher in the presence of portal hypertension due to altered intraoperative haemodynamics, ascites and coagulopathy.10 40 Ascites heightens the risk of wound complications such as dehiscence.44 A meta-analysis demonstrated that, compared with a non-cirrhotic group, patients with cirrhosis who underwent primary colorectal cancer surgery had more major complications, a higher reoperation rate and increased short-term mortality45 (table 2). Additional risk factors for mortality included older age, elevated bilirubin, prolonged prothrombin time, higher CTP class, MELD score >15, intraoperative transfusions and comorbidities (cardiovascular disease, chronic kidney disease, paraplegia and malnutrition).39 46–48 Nonetheless, improvements in surgical technique and perioperative care have led to reduced mortality rates over the last two decades. Mortality was reported to be 13% in a study of 72 cirrhosis patients undergoing colorectal surgery in 2003.46 However, in a more recent study, Lee *et al* reported mortality of 3.1% 161 patients undergoing colorectal surgery.48 #### Hernia repairs The incidence of abdominal wall hernia in patients with cirrhosis is 16%, which rises to 24% in patients with ascites.49 Half of these are umbilical hernias and 60% of patients experience recurrence following repair.49 Mortality is quoted to be 6% for umbilical hernia repair, which is higher in the emergency setting.50 However, a randomised controlled trial concluded that elective repair of an umbilical hernia is safe in cirrhosis patients, even in patients with a relatively high MELD score (table 2). The presence of ascites appears to be strongly predictive of hernia recurrence.51 52 #### Cardiovascular surgery Morbidity and mortality in patients with cirrhosis undergoing cardiovascular surgery is increased with higher risk of infectious, respiratory and renal complications alongside longer hospital stay.53–56 CABG and valvular surgery carry approximately fivefold and sevenfold increased risk of mortality in cirrhosis, respectively.56 A meta-analysis (CABG, valvular surgery and cardiopulmonary bypass) quoted 1-year mortality at 20.6%, 43.6% and 56.5% for patients with CTP A, B and C, respectively.57 Both CTP and MELD score reliably predict mortality,58 and cardiopulmonary bypass is not recommended in patients with an MELD >13.5 or CTP >8.59 60 Despite these data, cardiac surgery risk prediction models do not consider liver dysfunction as a surgical risk factor.61 Surgical aortic valve replacement carries higher mortality in comparison to transcatheter aortic valve replacement (TAVR), therefore, TAVR is recommended in cirrhotic patients.62 There are limited data on abdominal aortic aneurysm repair but CTP-B and MELD >10 are associated with reduced survival.63 #### Upper gastrointestinal and bariatric surgery Upper gastrointestinal surgery outcomes in patients with cirrhosis are variable. Emergency surgery for complicated peptic ulcer disease (perforation and bleeding) is associated with a high mortality rate (23%–64%).64 For gastric cancer operations, morbidity and mortality in cirrhosis patients is 25.6% and 10.3%, respectively.65 Surgery carries acceptable risks for CTP-A and CTP-B cirrhotic patients; thus gastrectomy with D2 or more lymph node dissection can be safely carried out in CTP-A patients, whereas only D1 lymph node dissection is recommended in CTP-B patients. Radical gastrectomy is likely to be fatal in CTP-C patients, with mortality rates of 100% reported.66 67 Oesophagectomy in cirrhosis patients carries a high risk of developing pulmonary complications (postoperative pneumonia, pleural effusions and chylothorax), ascites, anastomotic leaks during the first month, in addition to longer intensive care stays in comparison to patients without cirrhosis.68 69 Patients who are CTP-A have significantly lower mortality in comparison to CTP-B patients, and CTP-C disease remains a contraindication to oesophagectomy.68 MELD score >9 was associated with significantly lower 5-year survival and a score ≤9 was associated with similar outcomes to non-cirrhotic controls.70 Bariatric surgery is considered safe to be undertaken in an experienced centre. A meta-analysis and systematic review concluded that postoperative and liver-related complications were higher among patients with cirrhosis when compared with non-cirrhotic individuals. Significantly lower postoperative complications were noted with sleeve gastrectomy compared with Roux-en-Y gastric bypass.71 #### Appendicectomy The lifetime risk of appendicitis is 8.6% in males and 6.7% in females, making it the most common surgical emergency worldwide.72 A meta-analysis showed that 30-day mortality for cirrhosis patients undergoing appendicectomy was 9%, in comparison to 0.3% in those without cirrhosis. In patients with compensated cirrhosis, laparoscopic appendicectomy is safer compared with an open approach. However, in many studies there was a lack of information on the severity of cirrhosis and other patient characteristics.73 #### Orthopaedic surgery Adverse events are reported for cirrhosis patients undergoing total knee and hip arthroplasty but studies are mostly retrospective and limited.74–77 In a systematic review, cirrhotic patients are more likely to experience postoperative haemorrhage, surgical site infection and need for revision surgery after total hip arthroplasty.78 However, the severity of liver disease was not presented, and some studies report only short-term outcomes (table 2). ### Interventions to mitigate the risk of surgery in patients with cirrhosis A joint care approach is desirable to mimise the additional risk of surgery in patients with cirrhosis. The degree of portal hypertension can accurately predict postsurgical outcomes in cirrhosis. In the study by Reverter *et al*, patients with HVPG >16 mm Hg and ≥20 mm Hg were considered high and very high risk, respectively. Liver stiffness measurement of >25 kPa also correlates with CSPH and can be helpful in stratifying compensated cirrhosis.79 Endoscopy and contrast-enhanced CT scanning of the abdomen are indicated in all patients with cirrhosis. National guidance for endoscopic and pharmacological management of varices should be followed.80 81 Attention should also be given to optimising nutrition where possible.6 An area of debate is the role of portal decompression prior to surgery. Prophylactic TIPSS may facilitate planned surgery by reducing complications pertaining to portal hypertension. Uncontrolled retrospective studies suggest a potential role for TIPSS prior to surgery in selected patients82–86 (table 3). However, there is no evidence of improved surgical outcomes, and patient selection is not defined, although HVPG could be helpful as a guide. Moreover, the optimal timing of surgery after TIPSS is unclear and procedure-related complications should be considered. The present BSG guidance advises further research.81 View this table: [Table 3](http://fg.bmj.com/content/14/5/359/T3) Table 3 Studies on pre-operative tips in cirrhosis patients ### Areas requiring further study 1. Role of HVPG in stratifying risk prior to surgery, in patients with compensated cirrhosis or prior decompensation. Controlled studies are recommended. 2. Further multicentre prospective study on the utility of bespoke prognostic scoring systems. For patients with decompensated cirrhosis, these might include the EF-Chronic Liver Failure Acute Decompensation Score to guide risk. 3. In compensated cirrhosis, assessment of non-invasive markers of CSPH, such as liver stiffness measurements as a means of stratifying risk and selection for interventions prior to surgery. 4. The role of facilitative TIPSS prior to surgery. Further prospective comparative multicentre studies with a focus on patient selection criteria, for example, HVPG or liver stiffness measurements and postoperative outcomes. 5. Prospective studies to address the role of portal pressure lowering agents prior to surgery to reduce risk, including carvedilol, statins and combinations including rifaximin. 6. Prospective studies to investigate any potential role for prehabilitation within these cohorts of patients, which may improve surgical outcomes and reduce postoperative complications. 7. Further study to investigate the role of dynamic function testing such as viscoelastic tests and newer assays such as platelet function assays in predicting bleeding risk. ## Ethics statements ### Patient consent for publication Not applicable. ### Ethics approval Not applicable. ## Footnotes * Twitter @Nadirabbas_x, @NeilRaj1 * Correction notice This article has been corrected since it published Online First. A typographical error has been corrected in the abstract. * Contributors NA and DT contributed to the conception and design of guidelines documented and wrote the first draft. All coauthors contributed to critical revision of the article. * Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not–for–profit sectors. * Competing interests None declared. * Provenance and peer review Not commissioned; externally peer reviewed. [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/). ## References 1. Karlsen TH, Sheron N, Zelber-Sagi S, et al. The EASL-lancet liver commission: protecting the next generation of europeans against liver disease complications and premature mortality. Lancet 2022;399:61–116. [doi:10.1016/S0140-6736(21)01701-3](http://dx.doi.org/10.1016/S0140-6736(21)01701-3) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(21)01701-3&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 2. D’Amico G, Morabito A, D’Amico M, et al. Clinical states of cirrhosis and competing risks. J Hepatol 2018;68:563–76. [doi:10.1016/j.jhep.2017.10.020](http://dx.doi.org/10.1016/j.jhep.2017.10.020) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jhep.2017.10.020&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 3. Northup PG, Friedman LS, Kamath PS. AGA clinical practice update on surgical risk assessment and perioperative management in cirrhosis: expert review. Clin Gastroenterol Hepatol 2019;17:595–606. [doi:10.1016/j.cgh.2018.09.043](http://dx.doi.org/10.1016/j.cgh.2018.09.043) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.cgh.2018.09.043&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 4. O’Leary JG, Greenberg CS, Patton HM, et al. AGA clinical practice update: coagulation in cirrhosis. Gastroenterology 2019;157:34–43. [doi:10.1053/j.gastro.2019.03.070](http://dx.doi.org/10.1053/j.gastro.2019.03.070) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1053/j.gastro.2019.03.070&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 5. Villanueva C, Albillos A, Genescà J, et al. Bacterial infections adversely influence the risk of decompensation and survival in compensated cirrhosis. J Hepatol 2021;75:589–99. [doi:10.1016/j.jhep.2021.04.022](http://dx.doi.org/10.1016/j.jhep.2021.04.022) 6. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.euEuropean Association for the Study of the Liver. EASL clinical practice guidelines on nutrition in chronic liver disease. J Hepatol 2019;70:172–93. [doi:10.1016/j.jhep.2018.06.024](http://dx.doi.org/10.1016/j.jhep.2018.06.024) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jhep.2018.06.024&link_type=DOI) 7. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.euEuropean Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018;69:406–60. [doi:10.1016/j.jhep.2018.03.024](http://dx.doi.org/10.1016/j.jhep.2018.03.024) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jhep.2018.03.024&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 8. Izzy M, VanWagner LB, Lin G, et al. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology 2020;71:334–45. [doi:10.1002/hep.30875](http://dx.doi.org/10.1002/hep.30875) 9. Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013;144:1426–37. [doi:10.1053/j.gastro.2013.02.042](http://dx.doi.org/10.1053/j.gastro.2013.02.042) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1053/j.gastro.2013.02.042&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=23474284&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 10. Csikesz NG, Nguyen LN, Tseng JF, et al. Nationwide volume and mortality after elective surgery in cirrhotic patients. J Am Coll Surg 2009;208:96–103. [doi:10.1016/j.jamcollsurg.2008.09.006](http://dx.doi.org/10.1016/j.jamcollsurg.2008.09.006) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jamcollsurg.2008.09.006&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=19228510&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 11. Telem DA, Schiano T, Goldstone R, et al. Factors that predict outcome of abdominal operations in patients with advanced cirrhosis. Clin Gastroenterol Hepatol 2010;8:451–7. [doi:10.1016/j.cgh.2009.12.015](http://dx.doi.org/10.1016/j.cgh.2009.12.015) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.cgh.2009.12.015&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=20036761&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 12. Teh SH, Nagorney DM, Stevens SR, et al. Risk factors for mortality after surgery in patients with cirrhosis. Gastroenterology 2007;132:1261–9. [doi:10.1053/j.gastro.2007.01.040](http://dx.doi.org/10.1053/j.gastro.2007.01.040) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1053/j.gastro.2007.01.040&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=17408652&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000246020900014&link_type=ISI) 13. Mahmud N, Fricker Z, Hubbard RA, et al. Risk prediction models for post-operative mortality in patients with cirrhosis. Hepatology 2021;73:204–18. [doi:10.1002/hep.31558](http://dx.doi.org/10.1002/hep.31558) 14. Sato M, Tateishi R, Yasunaga H, et al. The ADOPT-LC score: a novel predictive index of in-hospital mortality of cirrhotic patients following surgical procedures, based on a national survey. Hepatol Res 2017;47:E35–43. [doi:10.1111/hepr.12719](http://dx.doi.org/10.1111/hepr.12719) 15. Reverter E, Cirera I, Albillos A, et al. The prognostic role of hepatic venous pressure gradient in cirrhotic patients undergoing elective extrahepatic surgery. J Hepatol 2019;71:942–50. [doi:10.1016/j.jhep.2019.07.007](http://dx.doi.org/10.1016/j.jhep.2019.07.007) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 16. Sepanlou SG, Safiri S, Bisignano C, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol 2020;5:245–66. [doi:10.1016/S2468-1253(19)30349-8](http://dx.doi.org/10.1016/S2468-1253(19)30349-8) 17. Millwala F, Nguyen GC, Thuluvath PJ. Outcomes of patients with cirrhosis undergoing non-hepatic surgery: risk assessment and management. World J Gastroenterol 2007;13:4056–63. [doi:10.3748/wjg.v13.i30.4056](http://dx.doi.org/10.3748/wjg.v13.i30.4056) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.3748/wjg.v13.i30.4056&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=17696222&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000248801300004&link_type=ISI) 18. Bleszynski MS, Bressan AK, Joos E, et al. Acute care and emergency general surgery in patients with chronic liver disease: how can we optimize perioperative care? A review of the literature. World J Emerg Surg 2018;13:32. [doi:10.1186/s13017-018-0194-1](http://dx.doi.org/10.1186/s13017-018-0194-1) 19. Ziser A, Plevak DJ, Wiesner RH, et al. Morbidity and mortality in cirrhotic patients undergoing anesthesia and surgery. Anesthesiology 1999;90:42–53. [doi:10.1097/00000542-199901000-00008](http://dx.doi.org/10.1097/00000542-199901000-00008) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1097/00000542-199901000-00008&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=9915311&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000077853300007&link_type=ISI) 20. Neeff H, Mariaskin D, Spangenberg HC, et al. Perioperative mortality after non-hepatic general surgery in patients with liver cirrhosis: an analysis of 138 operations in the 2000s using child and MELD scores. J Gastrointest Surg 2011;15:1–11. [doi:10.1007/s11605-010-1366-9](http://dx.doi.org/10.1007/s11605-010-1366-9) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s11605-010-1366-9&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=21061184&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 21. Northup PG, Wanamaker RC, Lee VD, et al. Model for end-stage liver disease (MELD) predicts nontransplant surgical mortality in patients with cirrhosis. Ann Surg 2005;242:244–51. [doi:10.1097/01.sla.0000171327.29262.e0](http://dx.doi.org/10.1097/01.sla.0000171327.29262.e0) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1097/01.sla.0000171327.29262.e0&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=16041215&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000230858000013&link_type=ISI) 22. del Olmo JA, Flor-Lorente B, Flor-Civera B, et al. Risk factors for nonhepatic surgery in patients with cirrhosis. World J Surg 2003;27:647–52. [doi:10.1007/s00268-003-6794-1](http://dx.doi.org/10.1007/s00268-003-6794-1) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s00268-003-6794-1&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=12732995&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000183680000004&link_type=ISI) 23. Johnson KM, Newman KL, Green PK, et al. Incidence and risk factors of postoperative mortality and morbidity after elective versus emergent abdominal surgery in a national sample of 8193 patients with cirrhosis. Ann Surg 2021;274:e345–54. [doi:10.1097/SLA.0000000000003674](http://dx.doi.org/10.1097/SLA.0000000000003674) 24. Farnsworth N, Fagan SP, Berger DH, et al. Child-turcotte-pugh versus MELD score as a predictor of outcome after elective and emergent surgery in cirrhotic patients. Am J Surg 2004;188:580–3. [doi:10.1016/j.amjsurg.2004.07.034](http://dx.doi.org/10.1016/j.amjsurg.2004.07.034) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.amjsurg.2004.07.034&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=15546574&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000225208600026&link_type=ISI) 25. Adiamah A, Crooks CJ, Hammond JS, et al. Mortality following elective and emergency colectomy in patients with cirrhosis: a population-based cohort study from England. Int J Colorectal Dis 2022;37:607–16. [doi:10.1007/s00384-021-04061-y](http://dx.doi.org/10.1007/s00384-021-04061-y) 26. Garrison RN, Cryer HM, Howard DA, et al. Clarification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg 1984;199:648–55. [doi:10.1097/00000658-198406000-00003](http://dx.doi.org/10.1097/00000658-198406000-00003) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1097/00000658-198406000-00003&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=6732310&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=A1984SW16800003&link_type=ISI) 27. de Goede B, Klitsie PJ, Lange JF, et al. Morbidity and mortality related to non-hepatic surgery in patients with liver cirrhosis: a systematic review. Best Pract Res Clin Gastroenterol 2012;26:47–59. [doi:10.1016/j.bpg.2012.01.010](http://dx.doi.org/10.1016/j.bpg.2012.01.010) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.bpg.2012.01.010&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=22482525&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 28. Gallstones and laparoscopic cholecystectomy. NIH Consens Statement 1992;10:1–28. [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=1301217&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 29. de Goede B, Klitsie PJ, Hagen SM, et al. Meta-analysis of laparoscopic versus open cholecystectomy for patients with liver cirrhosis and symptomatic cholecystolithiasis. Br J Surg 2013;100:209–16. [doi:10.1002/bjs.8911](http://dx.doi.org/10.1002/bjs.8911) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1002/bjs.8911&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=23034741&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 30. Puggioni A, Wong LL. A metaanalysis of laparoscopic cholecystectomy in patients with cirrhosis. J Am Coll Surg 2003;197:921–6. [doi:10.1016/j.jamcollsurg.2003.08.011](http://dx.doi.org/10.1016/j.jamcollsurg.2003.08.011) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jamcollsurg.2003.08.011&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=14644279&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 31. Tsugawa K, Koyanagi N, Hashizume M, et al. A comparison of an open and laparoscopic appendectomy for patients with liver cirrhosis. Surg Laparosc Endosc Percutan Tech 2001;11:189–94. [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=11444750&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 32. Pei KY, Liu F, Zhang Y. A matched comparison of laparoscopic versus open inguinal hernia repair in patients with liver disease using propensity score matching. Hernia 2018;22:419–26. [doi:10.1007/s10029-017-1693-9](http://dx.doi.org/10.1007/s10029-017-1693-9) 33. El-Awadi S, El-Nakeeb A, Youssef T, et al. Laparoscopic versus open cholecystectomy in cirrhotic patients: a prospective randomized study. Int J Surg 2009;7:66–9. [doi:10.1016/j.ijsu.2008.10.013](http://dx.doi.org/10.1016/j.ijsu.2008.10.013) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=19028148&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 34. Nguyen KT, Kitisin K, Steel J, et al. Cirrhosis is not a contraindication to laparoscopic cholecystectomy: results and practical recommendations. HPB (Oxford) 2011;13:192–7. [doi:10.1111/j.1477-2574.2010.00270.x](http://dx.doi.org/10.1111/j.1477-2574.2010.00270.x) 35. Belli G, D’Agostino A, Fantini C, et al. Laparoscopic incisional and umbilical hernia repair in cirrhotic patients. Surg Laparosc Endosc Percutan Tech 2006;16:330–3. [doi:10.1097/01.sle.0000213745.15773.c1](http://dx.doi.org/10.1097/01.sle.0000213745.15773.c1) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1097/01.sle.0000213745.15773.c1&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=17057574&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 36. Cobb WS, Heniford BT, Burns JM, et al. Cirrhosis is not a contraindication to laparoscopic surgery. Surg Endosc 2005;19:418–23. [doi:10.1007/s00464-004-8722-3](http://dx.doi.org/10.1007/s00464-004-8722-3) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s00464-004-8722-3&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=15624057&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 37. McAlister V. Management of umbilical hernia in patients with advanced liver disease. Liver Transpl 2003;9:623–5. [doi:10.1053/jlts.2003.50121](http://dx.doi.org/10.1053/jlts.2003.50121) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=12783406&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 38. Tsugawa K, Koyanagi N, Hashizume M, et al. A comparison of an open and laparoscopic appendectomy for patients with liver cirrhosis. Surg Laparosc Endosc Percutan Tech 2001;11:189–94. [doi:10.1097/00019509-200106000-00008](http://dx.doi.org/10.1097/00019509-200106000-00008) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=11444750&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 39. Nguyen GC, Correia AJ, Thuluvath PJ. The impact of cirrhosis and portal hypertension on mortality following colorectal surgery: a nationwide, population-based study. Dis Colon Rectum 2009;52:1367–74. [doi:10.1007/DCR.0b013e3181a80dca](http://dx.doi.org/10.1007/DCR.0b013e3181a80dca) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=19617746&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 40. Meunier K, Mucci S, Quentin V, et al. Colorectal surgery in cirrhotic patients: assessment of operative morbidity and mortality. Dis Colon Rectum 2008;51:1225–31. [doi:10.1007/s10350-008-9336-y](http://dx.doi.org/10.1007/s10350-008-9336-y) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s10350-008-9336-y&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=18521677&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000257919400012&link_type=ISI) 41. Metcalf AM, Dozois RR, Wolff BG, et al. The surgical risk of colectomy in patients with cirrhosis. Dis Colon Rectum 1987;30:529–31. [doi:10.1007/BF02554783](http://dx.doi.org/10.1007/BF02554783) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/BF02554783&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=3595374&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=A1987J259800007&link_type=ISI) 42. Ballian N, Rajamanickam V, Harms BA, et al. Predictors of mortality after emergent surgery for acute colonic diverticulitis: analysis of national surgical quality improvement project data. J Trauma Acute Care Surg 2013;74:611–6. [doi:10.1097/TA.0b013e31827d5d93](http://dx.doi.org/10.1097/TA.0b013e31827d5d93) 43. Masoomi H, Kang CY, Chen A, et al. Predictive factors of in-hospital mortality in colon and rectal surgery. J Am Coll Surg 2012;215:255–61. [doi:10.1016/j.jamcollsurg.2012.04.019](http://dx.doi.org/10.1016/j.jamcollsurg.2012.04.019) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jamcollsurg.2012.04.019&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=22640532&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 44. Moghadamyeghaneh Z, Carmichael JC, Mills SD, et al. Effects of ascites on outcomes of colorectal surgery in congestive heart failure patients. Am J Surg 2015;209:1020–7. [doi:10.1016/j.amjsurg.2014.08.021](http://dx.doi.org/10.1016/j.amjsurg.2014.08.021) 45. Cheng YX, Tao W, Zhang H, et al. Does liver cirrhosis affect the surgical outcome of primary colorectal cancer surgery? A meta-analysis. World J Surg Oncol 2021;19:167. [doi:10.1186/s12957-021-02267-6](http://dx.doi.org/10.1186/s12957-021-02267-6) 46. Gervaz P, Pak-art R, Nivatvongs S, et al. Colorectal adenocarcinoma in cirrhotic patients. J Am Coll Surg 2003;196:874–9. [doi:10.1016/S1072-7515(03)00117-0](http://dx.doi.org/10.1016/S1072-7515(03)00117-0) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/S1072-7515(03)00117-0&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=12788423&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000183280100006&link_type=ISI) 47. Ghaferi AA, Mathur AK, Sonnenday CJ, et al. Adverse outcomes in patients with chronic liver disease undergoing colorectal surgery. Ann Surg 2010;252:345–50. [doi:10.1097/SLA.0b013e3181e982d6](http://dx.doi.org/10.1097/SLA.0b013e3181e982d6) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=20622652&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 48. Lee JH, Yu CS, Lee JL, et al. Factors affecting the postoperative morbidity and survival of patients with liver cirrhosis following colorectal cancer surgery. Int J Colorectal Dis 2017;32:521–30. [doi:10.1007/s00384-016-2739-7](http://dx.doi.org/10.1007/s00384-016-2739-7) 49. Bhangui P, Laurent A, Amathieu R, et al. Assessment of risk for non-hepatic surgery in cirrhotic patients. J Hepatol 2012;57:874–84. [doi:10.1016/j.jhep.2012.03.037](http://dx.doi.org/10.1016/j.jhep.2012.03.037) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jhep.2012.03.037&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 50. Snitkjær C, Jensen KK, Henriksen NA, et al. Umbilical hernia repair in patients with cirrhosis: systematic review of mortality and complications. Hernia 2022;26:1435–45. [doi:10.1007/s10029-022-02598-7](http://dx.doi.org/10.1007/s10029-022-02598-7) 51. McKay A, Dixon E, Bathe O, et al. Umbilical hernia repair in the presence of cirrhosis and ascites: results of a survey and review of the literature. Hernia 2009;13:461–8. [doi:10.1007/s10029-009-0535-9](http://dx.doi.org/10.1007/s10029-009-0535-9) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s10029-009-0535-9&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=19652907&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000270651400002&link_type=ISI) 52. de Goede B, van Rooijen MMJ, van Kempen BJH, et al. Conservative treatment versus elective repair of umbilical hernia in patients with liver cirrhosis and ascites: results of a randomized controlled trial (crucial trial). Langenbecks Arch Surg 2021;406:219–25. [doi:10.1007/s00423-020-02033-4](http://dx.doi.org/10.1007/s00423-020-02033-4) 53. Steffen RJ, Bakaeen FG, Vargo PR, et al. Impact of cirrhosis in patients who underwent surgical aortic valve replacement. Am J Cardiol 2017;120:648–54. [doi:10.1016/j.amjcard.2017.05.034](http://dx.doi.org/10.1016/j.amjcard.2017.05.034) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.amjcard.2017.05.034&link_type=DOI) 54. Chou A-H, Chen T-H, Chen C-Y, et al. Long-term outcome of cardiac surgery in 1,040 liver cirrhosis patient-nationwide population-based cohort study. Circ J 2017;81:476–84. [doi:10.1253/circj.CJ-16-0849](http://dx.doi.org/10.1253/circj.CJ-16-0849) 55. Hayashida N, Shoujima T, Teshima H, et al. Clinical outcome after cardiac operations in patients with cirrhosis. Ann Thorac Surg 2004;77:500–5. [doi:10.1016/j.athoracsur.2003.06.021](http://dx.doi.org/10.1016/j.athoracsur.2003.06.021) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.athoracsur.2003.06.021&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=14759426&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000188651900029&link_type=ISI) 56. Araujo L, Dombrovskiy V, Kamran W, et al. The effect of preoperative liver dysfunction on cardiac surgery outcomes. J Cardiothorac Surg 2017;12:73. [doi:10.1186/s13019-017-0636-y](http://dx.doi.org/10.1186/s13019-017-0636-y) 57. Hsieh WC, Chen PC, Corciova FC, et al. Liver dysfunction as an important predicting risk factor in patients undergoing cardiac surgery: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8:20712–21. 58. Murata M, Kato TS, Kuwaki K, et al. Preoperative hepatic dysfunction could predict postoperative mortality and morbidity in patients undergoing cardiac surgery: utilization of the MELD scoring system. Int J Cardiol 2016;203:682–9. [doi:10.1016/j.ijcard.2015.10.181](http://dx.doi.org/10.1016/j.ijcard.2015.10.181) 59. Thielmann M, Mechmet A, Neuhäuser M, et al. Risk prediction and outcomes in patients with liver cirrhosis undergoing open-heart surgery. Eur J Cardiothorac Surg 2010;38:592–9. [doi:10.1016/j.ejcts.2010.02.042](http://dx.doi.org/10.1016/j.ejcts.2010.02.042) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.ejcts.2010.02.042&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=20413316&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 60. Suman A, Barnes DS, Zein NN, et al. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child-Pugh and MELD scores. Clin Gastroenterol Hepatol 2004;2:719–23. [doi:10.1016/s1542-3565(04)00296-4](http://dx.doi.org/10.1016/s1542-3565(04)00296-4) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/S1542-3565(04)00296-4&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=15290666&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 61. Thalheimer U, Triantos CK, Samonakis DN, et al. Infection, coagulation, and variceal bleeding in cirrhosis. Gut 2005;54:556–63. [doi:10.1136/gut.2004.048181](http://dx.doi.org/10.1136/gut.2004.048181) [FREE Full Text](http://fg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ3V0am5sIjtzOjU6InJlc2lkIjtzOjg6IjU0LzQvNTU2IjtzOjQ6ImF0b20iO3M6MjM6Ii9mbGdhc3Ryby8xNC81LzM1OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 62. Lee DU, Han J, Fan GH, et al. The clinical impact of chronic liver disease in patients undergoing transcatheter and surgical aortic valve replacement: systematic analysis of the 2011-2017 us Hospital database. Catheter Cardiovasc Interv 2021;98:E1044–57. [doi:10.1002/ccd.29952](http://dx.doi.org/10.1002/ccd.29952) 63. Marrocco-Trischitta MM, Kahlberg A, Astore D, et al. Outcome in cirrhotic patients after elective surgical repair of infrarenal aortic aneurysm. J Vasc Surg 2011;53:906–11. [doi:10.1016/j.jvs.2010.10.095](http://dx.doi.org/10.1016/j.jvs.2010.10.095) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.jvs.2010.10.095&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=21215574&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 64. Lehnert T, Herfarth C. Peptic ulcer surgery in patients with liver cirrhosis. Ann Surg 1993;217:338–46. [doi:10.1097/00000658-199304000-00005](http://dx.doi.org/10.1097/00000658-199304000-00005) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=8466308&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=A1993KY26600005&link_type=ISI) 65. Isozaki H, Okajima K, Ichinona T, et al. Surgery for gastric cancer in patients with cirrhosis. Surg Today 1997;27:17–21. [doi:10.1007/BF01366934](http://dx.doi.org/10.1007/BF01366934) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/BF01366934&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=9035295&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 66. Guo F, Ma S, Yang S, et al. Surgical strategy for gastric cancer patients with liver cirrhosis: a retrospective cohort study. Int J Surg 2014;12:810–4. [doi:10.1016/j.ijsu.2014.06.011](http://dx.doi.org/10.1016/j.ijsu.2014.06.011) 67. Lee JH, Kim J, Cheong JH, et al. Gastric cancer surgery in cirrhotic patients: result of gastrectomy with D2 lymph node dissection. World J Gastroenterol 2005;11:4623–7. [doi:10.3748/wjg.v11.i30.4623](http://dx.doi.org/10.3748/wjg.v11.i30.4623) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=16094699&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 68. Schizas D, Giannopoulos S, Vailas M, et al. The impact of cirrhosis on esophageal cancer surgery: an up-to-date meta-analysis. Am J Surg 2020;220:865–72. [doi:10.1016/j.amjsurg.2020.02.035](http://dx.doi.org/10.1016/j.amjsurg.2020.02.035) 69. Cheng C, Wen YW, Tsai CY, et al. Impact of child-pugh class a liver cirrhosis on perioperative outcomes of patients with oesophageal cancer: a propensity score-matched analysis. Eur J Cardiothorac Surg 2020:ezaa334. [doi:10.1093/ejcts/ezaa334](http://dx.doi.org/10.1093/ejcts/ezaa334) 70. Valmasoni M, Pierobon ES, De Pasqual CA, et al. Esophageal cancer surgery for patients with concomitant liver cirrhosis: a single-center matched-cohort study. Ann Surg Oncol 2017;24:763–9. [doi:10.1245/s10434-016-5610-8](http://dx.doi.org/10.1245/s10434-016-5610-8) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1245/s10434-016-5610-8&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=27704371&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 71. Agarwal L, Sahu AK, Baksi A, et al. Safety of metabolic and bariatric surgery in obese patients with liver cirrhosis: a systematic review and meta-analysis. Surg Obes Relat Dis 2021;17:525–37. [doi:10.1016/j.soard.2020.11.004](http://dx.doi.org/10.1016/j.soard.2020.11.004) 72. Humes DJ, Simpson J. Acute appendicitis. BMJ 2006;333:530–4. [doi:10.1136/bmj.38940.664363.AE](http://dx.doi.org/10.1136/bmj.38940.664363.AE) [FREE Full Text](http://fg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMzMvNzU2Ny81MzAiO3M6NDoiYXRvbSI7czoyMzoiL2ZsZ2FzdHJvLzE0LzUvMzU5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 73. Rashid A, Gupta A, Adiamah A, et al. Mortality following appendicectomy in patients with liver cirrhosis: a systematic review and meta-analysis. World J Surg 2022;46:531–41. [doi:10.1007/s00268-021-06373-0](http://dx.doi.org/10.1007/s00268-021-06373-0) 74. Cohen SM, Te HS, Levitsky J. Operative risk of total hip and knee arthroplasty in cirrhotic patients. J Arthroplasty 2005;20:460–6. [doi:10.1016/j.arth.2004.05.004](http://dx.doi.org/10.1016/j.arth.2004.05.004) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=16124961&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 75. Hsieh PH, Chen LH, Lee MS, et al. HIP arthroplasty in patients with cirrhosis of the liver. J Bone Joint Surg Br 2003;85:818–21. [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=12931797&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 76. Shih LY, Cheng CY, Chang CH, et al. Total knee arthroplasty in patients with liver cirrhosis. J Bone Joint Surg Am 2004;86:335–41. [doi:10.2106/00004623-200402000-00017](http://dx.doi.org/10.2106/00004623-200402000-00017) [Abstract/FREE Full Text](http://fg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiamJqc2FtIjtzOjU6InJlc2lkIjtzOjg6Ijg2LzIvMzM1IjtzOjQ6ImF0b20iO3M6MjM6Ii9mbGdhc3Ryby8xNC81LzM1OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 77. Moon YW, Kim YS, Kwon SY, et al. Perioperative risk of hip arthroplasty in patients with cirrhotic liver disease. J Korean Med Sci 2007;22:223–6. [doi:10.3346/jkms.2007.22.2.223](http://dx.doi.org/10.3346/jkms.2007.22.2.223) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=17449928&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 78. Onochie E, Kayani B, Dawson-Bowling S, et al. Total hip arthroplasty in patients with chronic liver disease: a systematic review. SICOT J 2019;5:40. [doi:10.1051/sicotj/2019037](http://dx.doi.org/10.1051/sicotj/2019037) 79. Bosch J, Garcia-Tsao G, et al. Baveno VII - Renewing consensus in portal hypertension: report of the Baveno VII consensus workshop: personalized care in portal hypertension. J Hepatol 2022. [doi:10.1016/j.jhep.2021.12.022](http://dx.doi.org/10.1016/j.jhep.2021.12.022) 80. NICE. Cirrhosis in over 16s: assessment and management. 2016. 81. Tripathi D, Stanley AJ, Hayes PC, et al. U.K. guidelines on the management of variceal haemorrhage in cirrhotic patients. Gut 2015;64:1680–704. [doi:10.1136/gutjnl-2015-309262](http://dx.doi.org/10.1136/gutjnl-2015-309262) [Abstract/FREE Full Text](http://fg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ3V0am5sIjtzOjU6InJlc2lkIjtzOjEwOiI2NC8xMS8xNjgwIjtzOjQ6ImF0b20iO3M6MjM6Ii9mbGdhc3Ryby8xNC81LzM1OS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 82. Goel A, Khanna A, Mehrzad H, et al. Portal decompression with transjugular intrahepatic portosystemic shunt prior to nonhepatic surgery: a single-center case series. Eur J Gastroenterol Hepatol 2021;33:e254–9. [doi:10.1097/MEG.0000000000002026](http://dx.doi.org/10.1097/MEG.0000000000002026) 83. Lahat E, Lim C, Bhangui P, et al. Transjugular intrahepatic portosystemic shunt as a bridge to non-hepatic surgery in cirrhotic patients with severe portal hypertension: a systematic review. HPB (Oxford) 2018;20:101–9. [doi:10.1016/j.hpb.2017.09.006](http://dx.doi.org/10.1016/j.hpb.2017.09.006) 84. Tabchouri N, Barbier L, Menahem B, et al. Original study: transjugular intrahepatic portosystemic shunt as a bridge to abdominal surgery in cirrhotic patients. J Gastrointest Surg 2019;23:2383–90. [doi:10.1007/s11605-018-4053-x](http://dx.doi.org/10.1007/s11605-018-4053-x) 85. Tripathi D, Stanley AJ, Hayes PC, et al. Transjugular intrahepatic portosystemic stent-shunt in the management of portal hypertension. Gut 2020;69:1173–92. [doi:10.1136/gutjnl-2019-320221](http://dx.doi.org/10.1136/gutjnl-2019-320221) [Abstract/FREE Full Text](http://fg.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ3V0am5sIjtzOjU6InJlc2lkIjtzOjk6IjY5LzcvMTE3MyI7czo0OiJhdG9tIjtzOjIzOiIvZmxnYXN0cm8vMTQvNS8zNTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 86. Trebicka J, Fernandez J, Papp M, et al. The predict study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology. J Hepatol 2020;73:842–54. [doi:10.1016/j.jhep.2020.06.013](http://dx.doi.org/10.1016/j.jhep.2020.06.013) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 87. Montomoli J, Erichsen R, Strate LL, et al. Coexisting liver disease is associated with increased mortality after surgery for diverticular disease. Dig Dis Sci 2015;60:1832–40. [doi:10.1007/s10620-014-3503-x](http://dx.doi.org/10.1007/s10620-014-3503-x) 88. Lee KC, Chung KC, Chen HH, et al. Short-term postoperative outcomes of colorectal cancer among patients with chronic liver disease: a national population-based study. BMJ Open 2018;8:e020511. [doi:10.1136/bmjopen-2017-020511](http://dx.doi.org/10.1136/bmjopen-2017-020511) 89. Valmasoni M, Pierobon ES, De Pasqual CA, et al. Esophageal cancer surgery for patients with concomitant liver cirrhosis: A single-center matched-cohort study. Ann Surg Oncol 2017;24:763–9. [doi:10.1245/s10434-016-5610-8](http://dx.doi.org/10.1245/s10434-016-5610-8) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1245/s10434-016-5610-8&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=27704371&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 90. Cheng C, Wen YW, Tsai CY, et al. Impact of child-pugh class a liver cirrhosis on perioperative outcomes of patients with oesophageal cancer: a propensity score-matched analysis. Eur J Cardiothorac Surg 2020;59:395–402. [doi:10.1093/ejcts/ezaa334](http://dx.doi.org/10.1093/ejcts/ezaa334) 91. Lee DU, Fan GH, Hastie DJ, et al. The clinical impact of cirrhosis on the postoperative outcomes of patients undergoing bariatric surgery: propensity score-matched analysis of 2011-2017 US hospitals. Expert Rev Gastroenterol Hepatol 2021;15:1191–200. [doi:10.1080/17474124.2021.1902803](http://dx.doi.org/10.1080/17474124.2021.1902803) 92. Mavilia MG, Wakefield D, Karagozian R. Outcomes of bariatric surgery in chronic liver disease: a national inpatient sample analysis. Obes Surg 2020;30:941–7. [doi:10.1007/s11695-019-04330-4](http://dx.doi.org/10.1007/s11695-019-04330-4) 93. Gray SH, Vick CC, Graham LA, et al. Umbilical herniorrhapy in cirrhosis: improved outcomes with elective repair. J Gastrointest Surg 2008;12:675–81. [doi:10.1007/s11605-008-0496-9](http://dx.doi.org/10.1007/s11605-008-0496-9) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=18270782&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 94. Eker HH, van Ramshorst GH, de Goede B, et al. A prospective study on elective umbilical hernia repair in patients with liver cirrhosis and ascites. Surgery 2011;150:542–6. [doi:10.1016/j.surg.2011.02.026](http://dx.doi.org/10.1016/j.surg.2011.02.026) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.surg.2011.02.026&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=21621237&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) [Web of Science](http://fg.bmj.com/lookup/external-ref?access_num=000295108300022&link_type=ISI) 95. Carbonell AM, Wolfe LG, DeMaria EJ. Poor outcomes in cirrhosis-associated hernia repair: a nationwide cohort study of 32,033 patients. Hernia 2005;9:353–7. [doi:10.1007/s10029-005-0022-x](http://dx.doi.org/10.1007/s10029-005-0022-x) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1007/s10029-005-0022-x&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=16132187&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 96. Marsman HA, Heisterkamp J, Halm JA, et al. Management in patients with liver cirrhosis and an umbilical hernia. Surgery 2007;142:372–5. [doi:10.1016/j.surg.2007.05.006](http://dx.doi.org/10.1016/j.surg.2007.05.006) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1016/j.surg.2007.05.006&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=17723889&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 97. Pinheiro RS, Andraus W, Waisberg DR, et al. Abdominal hernias in cirrhotic patients: surgery or conservative treatment? results of a prospective cohort study in a high volume center: cohort study. Ann Med Surg (Lond) 2020;49:9–13. [doi:10.1016/j.amsu.2019.11.009](http://dx.doi.org/10.1016/j.amsu.2019.11.009) 98. Oh HK, Kim H, Ryoo S, et al. Inguinal hernia repair in patients with cirrhosis is not associated with increased risk of complications and recurrence. World J Surg 2011;35:1229–33. [doi:10.1007/s00268-011-1007-9](http://dx.doi.org/10.1007/s00268-011-1007-9) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=21365342&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 99. Patti R, Almasio PL, Buscemi S, et al. Inguinal hernioplasty improves the quality of life in patients with cirrhosis. Am J Surg 2008;196:373–8. [doi:10.1016/j.amjsurg.2008.02.007](http://dx.doi.org/10.1016/j.amjsurg.2008.02.007) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=18639226&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 100.Jacob KA, Hjortnaes J, Kranenburg G, et al. Mortality after cardiac surgery in patients with liver cirrhosis classified by the Child-Pugh score. Interact Cardiovasc Thorac Surg 2015;20:520–30. [doi:10.1093/icvts/ivu438](http://dx.doi.org/10.1093/icvts/ivu438) [CrossRef](http://fg.bmj.com/lookup/external-ref?access_num=10.1093/icvts/ivu438&link_type=DOI) [PubMed](http://fg.bmj.com/lookup/external-ref?access_num=25612743&link_type=MED&atom=%2Fflgastro%2F14%2F5%2F359.atom) 101.Bell JE, Amin R, Labaran LA, et al. Impact of compensated cirrhosis etiology on postoperative outcomes following total knee arthroplasty. J Arthroplasty 2021;36:148–53. [doi:10.1016/j.arth.2020.07.019](http://dx.doi.org/10.1016/j.arth.2020.07.019) 102.Fares N, Robic M-A, Péron J-M, et al. Transjugular intrahepatic portosystemic shunt placement before abdominal intervention in cirrhotic patients with portal hypertension: lessons from a pilot study. Eur J Gastroenterol Hepatol 2018;30:21–6. [doi:10.1097/MEG.0000000000000990](http://dx.doi.org/10.1097/MEG.0000000000000990) 103.Chang J, Höfer P, Böhling N, et al. Preoperative tips prevents the development of postoperative acute-on-chronic liver failure in patients with high CLIF-C AD score. JHEP Rep 2022;4:100442. [doi:10.1016/j.jhepr.2022.100442](http://dx.doi.org/10.1016/j.jhepr.2022.100442)