Skip to main content

From Immunogenic Mechanisms to Novel Therapeutic Approaches in Inflammatory Bowel Disease

  • Chapter
Book cover Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

Abstract

Crohn’s disease (CD) and ulcerative colitis (UC) are the two most common forms of chronic inflammatory bowel disease (IBD). The etiology of IBD is still unclear and should be considered as multi-factorial according to recent studies.1 Genetic factors seem to play a pathogenetic role as well as environmental, infectious and immulogical factors. Substantial progress, however, has been made in the understanding of the pathogenesis of IBD during the past years persuing the view, that IBD could result from disturbances of the intestinal barrier and a pathologic activation of the intestinal immune response towards luminal, bacterial antigens. This paradigm has led to the identification of key players of the intestinal immune system, which represent promising targets for novel therapeutic approaches. The objective of this chapter is to provide an overview over recent advances in the elucidation of the intestinal immune system in IBD and novel therapeutic approaches that have been derived from these results. Molecular biological techniques have revealed, that many of the established conventional antiinflammatory drugs such as salicylic acids, steroids or immunuosuppressants act at the same molecules that are the target for modern biologicals, i.e., the cytokine TNF or the transcription factor NFκB. This chapter, however, focusses on novel experimental approaches such as recombinant antiinflammatory cytokines, neutralizing antibodies or antisense oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duchmann R, Zeitz M. Crohn’ disease. In: Ogra P, Strober W, eds. Handbook of mucosal immunology. Academic Press, 1999:1005.

    Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  3. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603–606.

    Article  PubMed  CAS  Google Scholar 

  4. Farrell RJ, Peppercorn MA. Ulcerative colitis. The Lancet 2002; 359:331–340.

    Article  Google Scholar 

  5. Sandborn WJ, Landers CJ, Tremaine WJ et al. Antineutrophil cytoplasmic antibody correlates with chronic pouchitis after ileal pouch-anal anastomosis. Am J Gastroenterol 1995; 90:740–747.

    PubMed  CAS  Google Scholar 

  6. Gordon LK, Eggena M, Targan SR et al. Definition of ocular antigens in ciliary body and retinal ganglion cells by the marker antibody pANCA. Invest Ophthalmol Vis Sci 1999; 40:1250–1255.

    PubMed  CAS  Google Scholar 

  7. Gordon LK, Eggena M, Targan SR et al. Mast cell and neuroendocrine cytoplasmic autoantigen(s) detected by monoclonal pANCA antibodies. Clin Immunol 2000; 94:42–50.

    Article  PubMed  CAS  Google Scholar 

  8. Cohavy O, Bruckner D, Gordon LK et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000; 68:1542–1548.

    Article  PubMed  CAS  Google Scholar 

  9. Vashishtha A, Fischetti VA. Surface-exposed conserved region of the streptococcal M protein induces antibodies cross-reactive with denatured forms of myosin. J Immunol 1993; 150:4693–4701.

    PubMed  CAS  Google Scholar 

  10. Qiao L, Schurmann G, Betzler M et al. Activation and signaling status of human lamina propria T lymphocytes. Gastroenterology 1991; 101:1529–1536.

    PubMed  CAS  Google Scholar 

  11. Braunstein J, Qiao L, Autschbach F et al. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 1997; 41:215–220.

    Article  PubMed  CAS  Google Scholar 

  12. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245–252.

    Article  PubMed  CAS  Google Scholar 

  13. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol 2000; 1:199–205.

    Article  PubMed  CAS  Google Scholar 

  14. Liu Z, Geboes K, Hellings P et al. B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosal inflammation in chronic experimental colitis. J Immunol 2001; 167:1830–1838.

    PubMed  CAS  Google Scholar 

  15. Kweon MN, Fujihashi K, Wakatsuki Y et al. Mucosally induced systemic T cell unresponsiveness to ovalbumin requires CD40 ligand-CD40 interactions. J Immunol 1999; 162:1904–1909.

    PubMed  CAS  Google Scholar 

  16. Higgins LM, McDonald SA, Whittle N et al. Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: Amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol 1999; 162:486–493.

    PubMed  CAS  Google Scholar 

  17. Hutloff A, Dittrich AM, Beier KC et al. ICOS is an inducible T-cell costimulator structurally and functionally related to CD28. Nature 1999; 397:263–266.

    Article  PubMed  CAS  Google Scholar 

  18. Tafuri A, Shahinian A, Bladt F et al. ICOS is essential for effective T-helper-cell responses. Nature 2001; 409:105–109.

    Article  PubMed  CAS  Google Scholar 

  19. Boirivant M, Pica R, DeMaria R et al. Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis. J Clin Invest 1996; 98:2616–2622.

    Article  PubMed  CAS  Google Scholar 

  20. Cario E, Rosenberg IM, Brandwein SL et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000; 164:966–972.

    PubMed  CAS  Google Scholar 

  21. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68:7010–7017.

    Article  PubMed  CAS  Google Scholar 

  22. Jackman RM, Moody DB, Porcelli SA. Mechanisms of lipid antigen presentation by CD1. Crit Rev Immunol 1999; 19:49–63.

    PubMed  CAS  Google Scholar 

  23. Colgan SP, Hershberg RM, Furuta GT et al. Ligation of intestinal epithelial CD1d induces bioactive IL-10: Critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA 1999; 96:13938–13943.

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995; 95:2945–2953.

    Article  PubMed  CAS  Google Scholar 

  25. Schuermann GM, Aber-Bishop AE, Facer P et al. Altered expression of cell adhesion molecules in uninvolved gut in inflammatory bowel disease. Clin Exp Immunol 1993; 94:341–347.

    Article  PubMed  CAS  Google Scholar 

  26. Ogra PL, Strober W, Bienenstock J et al, eds. Strober WSE: Mucosal immunology. San Diego: Academic Press, 1999.

    Google Scholar 

  27. Casini-Raggi V, Kam L, Chong YJ et al. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J Immunol 1995; 154:2434–2440.

    PubMed  CAS  Google Scholar 

  28. Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157:1261–1270.

    PubMed  CAS  Google Scholar 

  29. Plevy SE, Landers CJ, Prehn J et al. A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 1997; 159:6276–6282.

    PubMed  CAS  Google Scholar 

  30. Boirivant M, Marini M, Di Felice G et al. Lamina propria T cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 1999; 116:557–565.

    Article  PubMed  CAS  Google Scholar 

  31. Atreya R, Mudter J, Finotto S et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in crohn disease and experimental colitis in vivo. Nat Med 2000; 6:583–588. taf/DynaPage.taf?file=/nm/journal/v586/n585/full/nm0500_0583.html taf/DynaPage.taf?file=/nm/journal/v0506/n0505/abs/nm0500_0583.html.

    Article  PubMed  CAS  Google Scholar 

  32. Magram J, Sfarra J, Connaughton S et al. IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann NY Acad Sci 1996; 795:60–70.

    Article  PubMed  CAS  Google Scholar 

  33. Szabo SJ, Jacobson NG, Dighe AS et al. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 1995; 2:665–675.

    Article  PubMed  CAS  Google Scholar 

  34. Simpson SJ, Shah S, Comiskey M et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187:1225–1234.

    Article  PubMed  CAS  Google Scholar 

  35. Wirtz S, Finotto S, Kanzler S et al. Cutting edge: Chronic intestinal inflammation in STAT-4 transgenic mice: Characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens. J Immunol 1999; 162:1884–1888.

    PubMed  CAS  Google Scholar 

  36. Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13:715–725.

    Article  PubMed  CAS  Google Scholar 

  37. Wiekowski MT, Leach MW, Evans EW et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 2001; 166:7563–7570.

    PubMed  CAS  Google Scholar 

  38. Wirtz S, Becker C, Blumberg R et al. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. J Immunol 2002; 168:411–420.

    PubMed  CAS  Google Scholar 

  39. Ten Hove T, Corbaz A, Amitai H et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice. Gastroenterology 2001; 121:1372–1379.

    Article  PubMed  CAS  Google Scholar 

  40. Szabo SJ, Kim ST, Costa GL et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100:655–669.

    Article  PubMed  CAS  Google Scholar 

  41. Szabo SJ, Sullivan BM, Stemmann C et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 2002; 295:338–342.

    Article  PubMed  CAS  Google Scholar 

  42. Neurath MF, Weigmann B, Finotto S et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 2002; 195:1129–1143.

    Article  PubMed  CAS  Google Scholar 

  43. Monteleone G, Biancone L, Marasco R et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  44. Christ AD, Stevens AC, Koeppen H et al. An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn’s disease. Gastroenterology 1998; 115:307–313.

    Article  PubMed  CAS  Google Scholar 

  45. Neurath MF, Fuss I, Kelsall BL et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp Med 1995; 182:1281–1290.

    Article  PubMed  CAS  Google Scholar 

  46. Holtmann M, Schütz M, Galle PR et al. Functional relevance of soluble and transmembrane TNF and TNF-signaltransduction in gastrointestinal diseases with special reference to inflammatory bowel disease. submitted.

    Google Scholar 

  47. Neurath MF, Fuss I, Pasparakis M et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 1997; 27:1743–1750.

    Article  PubMed  CAS  Google Scholar 

  48. Pender SL, Fell JM, Chamow SM et al. A p55 TNF receptor immunoadhesin prevents T cell-mediated intestinal injury by inhibiting matrix metalloproteinase production. J Immunol 1998; 160:4098–4103.

    PubMed  CAS  Google Scholar 

  49. Murch SH, Braegger CP, Walker-Smith JA et al. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut 1993; 34:1705–1709.

    Article  PubMed  CAS  Google Scholar 

  50. Beutler B. Tumor necrosis factors: The molecules and their emerging role in medicine. New York: Raven Press, 1992.

    Google Scholar 

  51. Grell M, Douni E, Wajant H et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83:793–802.

    Article  PubMed  CAS  Google Scholar 

  52. Holtmann MH, Douni E, Schütz M et al. Tumor necrosis factor-receptor 2 is upregulated on lamina propria mononuclear cells in Crohn’s disease and promotes experimental colitis in vivo. Eur J Immunol in press.

    Google Scholar 

  53. Schmid RM, Adler G, Liptay S. Activation of NFκB in inflammatory bowel disease. Gut 1998; 43:587–588.

    Article  PubMed  CAS  Google Scholar 

  54. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(κ)B kinase-beta. Nature 1998; 396:77–80.

    Article  PubMed  CAS  Google Scholar 

  55. Auphan N, DiDonato JA, Rosette C et al. Immunosuppression by glucocorticoids: Inhibition of NF-κ B activity through induction of I κ B synthesis. Science 1995; 270:286–290.

    Article  PubMed  CAS  Google Scholar 

  56. Schmid RM, Adler G. NF-κB/rel/IκB: Implications in gastrointestinal diseases. Gastroenterology 2000; 118:1208–1228.

    Article  PubMed  CAS  Google Scholar 

  57. Knight DM, Trinh H, Le J et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol 1993; 30:1443–1453.

    Article  PubMed  CAS  Google Scholar 

  58. Scallon BJ, Moore MA, Trinh H et al. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine 1995; 7:251–259.

    Article  PubMed  CAS  Google Scholar 

  59. Siegel SA, Shealy DJ, Nakada MT et al. The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine 1995; 7:15–25.

    Article  PubMed  CAS  Google Scholar 

  60. Targan SR, Hanauer SB, van Deventer SJ et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 1997; 337:1029–1035.

    Article  PubMed  CAS  Google Scholar 

  61. Present DH, Rutgeerts P, Targan S et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340:1398–1405.

    Article  PubMed  CAS  Google Scholar 

  62. Hanauer SB, Feagan BG, Lichtenstein GR et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002; 359:1541–1549.

    Article  PubMed  CAS  Google Scholar 

  63. Lugering A, Schmidt M, Lugering N et al. Infliximab induces apoptosis in monocytes from patients with chronic active crohn’s disease by using a caspase-dependent pathway. Gastroenterology 2001; 121:1145–1157.

    Article  PubMed  CAS  Google Scholar 

  64. ten Hove T, van Montfrans C, Peppelenbosch MP et al. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 2002; 50:206–211.

    Article  PubMed  Google Scholar 

  65. Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345:1098–1104.

    Article  PubMed  CAS  Google Scholar 

  66. Gluck T, Linde HJ, Scholmerich J et al. Anti-tumor necrosis factor therapy and Listeria monocytogenes infection: Report of two cases. Arthritis Rheum 2002; 46:2255–2257; discussion 2257.

    Article  PubMed  CAS  Google Scholar 

  67. Stack WA, Mann SD, Roy AJ et al. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease. Lancet 1997; 349:521–524.

    Article  PubMed  CAS  Google Scholar 

  68. Sandborn WJ, Feagan BG, Hanauer SB et al. An engineered human antibody to TNF (CDP571) for active Crohn’s disease: A randomized double-blind placebo-controlled trial. Gastroenterology 2001; 120:1330–1338.

    Article  PubMed  CAS  Google Scholar 

  69. Evans RC, Clarke L, Heath P et al. Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571. Aliment Pharmacol Ther 1997; 11:1031–1035.

    Article  PubMed  CAS  Google Scholar 

  70. Sandborn WJ, Hanauer SB, Katz S et al. Etanercept for active crohn’s disease: A randomized, double-blind, placebo-controlled trial. Gastroenterology 2001; 121:1088–1094.

    Article  PubMed  CAS  Google Scholar 

  71. Moreira AL, Sampaio EP, Zmuidzinas A et al. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 1993; 177:1675–1680.

    Article  PubMed  CAS  Google Scholar 

  72. Bauditz J, Haemling J, Ortner M et al. Treatment with tumour necrosis factor inhibitor oxpentifylline does not improve corticosteroid dependent chronic active Crohn’s disease. Gut 1997; 40:470–474.

    PubMed  CAS  Google Scholar 

  73. Black RA, Rauch CT, Kozlosky CJ et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385:729–733.

    Article  PubMed  CAS  Google Scholar 

  74. Cohen PS, Nakshatri H, Dennis J et al. CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency. Proc Natl Acad Sci USA 1996; 93:3967–3971.

    Article  PubMed  CAS  Google Scholar 

  75. Hommes D, van den Blink B, Plasse T et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 2002; 122:7–14.

    Article  PubMed  CAS  Google Scholar 

  76. Barbulescu K, Becker C, Schlaak JF et al. IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-gamma promoter in primary CD4+ T lymphocytes. J Immunol 1998; 160:3642–3647.

    PubMed  CAS  Google Scholar 

  77. Kuhn R, Lohler J, Rennick D et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75:263–274.

    Article  PubMed  CAS  Google Scholar 

  78. van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s Disease Study Group. Gastroenterology 1997; 113:383–389.

    Article  PubMed  Google Scholar 

  79. Fedorak RN, Gangl A, Elson CO et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000; 119:1473–1482.

    Article  PubMed  CAS  Google Scholar 

  80. Schreiber S, Fedorak RN, Nielsen OH et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000; 119:1461–1472.

    Article  PubMed  CAS  Google Scholar 

  81. Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289:1352–1355.

    Article  PubMed  CAS  Google Scholar 

  82. Hanauer SB, Baert F, Robinson M. Interferon treatment in mild to moderate active Crohn’s disease: Preliminary results in an open label study. Gastroenterology 1994; 106:A696.

    Google Scholar 

  83. Madsen SM, Schlichting P, Davidsen B et al. An open-labeled, randomized study comparing systemic interferon-alpha-2A and prednisolone enemas in the treatment of left-sided ulcerative colitis. Am J Gastroenterol 2001; 96:1807–1815.

    PubMed  CAS  Google Scholar 

  84. Gasché C, Schölmerich J, Brynskow J et al. Prospective evaluation of interferon-alpha in treatment of chronic active Crohn’s disease. Dig dis Sci 1995; 40:800–804.

    Article  PubMed  Google Scholar 

  85. Nikolaus S, Rutgeerts P, Fedorak RN et al. Recombinant human interferon-beta (IFNbeta-1a) induces remission and is well tolerated in moderately active ulcerative colitis (UC). Gastroenterology 2001; 120:A454.

    Google Scholar 

  86. Musch E, Jüntgen C, Witzke O et al. Successful therapy of colitis ulcerosa by beta-interferon. Gut 1995; 37:A141.

    Google Scholar 

  87. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH et al. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κ B abrogates established experimental colitis in mice. Nat Med 1996; 2:998–1004.

    Article  PubMed  CAS  Google Scholar 

  88. Löfberg R, Neurath M, Ost A et al. Topical NFκ p65 antisense oligonucleotides in patients with active distal colonic IBD. A randomised, controlled pilot trial. Gastroenterology 2002; 122:A60.

    Article  Google Scholar 

  89. James SP. Remission of Crohn’s disease after human immunodeficiency virus infection. Gastroenterology 1988; 95:1667–1669.

    PubMed  CAS  Google Scholar 

  90. Deusch K, Mauthe B, Reiter C et al. CD4-antibody treatment of inflammatory bowel disease: One-year follow-up. Gastroenterology 1993; 104:A691.

    Google Scholar 

  91. Stronkhorst A, Radema S, Yong SL et al. CD4 antibody treatment in patients with active Crohn’s disease: A phase 1 dose finding study. Gut 1997; 40:320–327.

    PubMed  CAS  Google Scholar 

  92. Hanai H, Watanabe F, Matsushida I et al. Granulocyte and monocyte adsorption apheresis in patients with severe corticosteroid unresponsive ulcerative colitis. Gastroenterology 2002; T1198.

    Google Scholar 

  93. Sinha A, Nightingale J, West KP et al. Epidermal growth-factor enemas are ffective in the treatment of left-sided ulcerative colitis. Gastroenterology 2001; 120:A11–12.

    Google Scholar 

  94. Sandborn WJ, Sands BE, Wolf DC et al. Repifermin (Keratinocyte Growth Factor 2) for the treatment of active ulcerative colitis: A randomized, double-blind, placebo-controlled, dose-escalation trial. Gastroenterology 2002; 122:A61.

    Google Scholar 

  95. Hamamoto N, Maemura K, Hirata I et al. Inhibition of dextran sulphate sodium (DSS)-induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1)). Clin Exp Immunol 1999; 117:462–468.

    Article  PubMed  CAS  Google Scholar 

  96. Soriano A, Salas A, Sans M et al. VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab Invest 2000; 80:1541–1551.

    Article  PubMed  CAS  Google Scholar 

  97. Podolsky DK, Lobb R, King N. Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J clin Invest 1993; 91:372–380.

    Article  Google Scholar 

  98. Gordon FH, Lai CW, Hamilton MH et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology 2001; 121:268–274.

    Article  PubMed  CAS  Google Scholar 

  99. Gosh S, Goldin E, Malchow H et al. A randomised, double-blind, placebo-controlled, pan-European study of a recombinant humanised antibody to alpha4 integrin (Antegren TM) in moderate to severely active Crohn’s disease. Gastroenterology 2001; 121:A127–128.

    Google Scholar 

  100. Gordon FH, Hamilton MI, Donoghue S. Treatment of active ulcerative colitis with a recombinant humanised antibody to alpha4 integrin (Antegren TM). Gastroenterology 1999; 116:A726.

    Google Scholar 

  101. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998; 114:1133–1142.

    Article  PubMed  CAS  Google Scholar 

  102. Yacyshyn BR, Chey WY, Goff J et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicafersen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut 2002; 51:30–36.

    Article  PubMed  CAS  Google Scholar 

  103. Schreiber S, Hampe J, Malchow H et al. The german ICAM-1 study group. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology 2001; 120:1339–1346.

    Article  PubMed  CAS  Google Scholar 

  104. Sands BE, Bank S, Sninsky CA et al. Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 1999; 117:58–64.

    Article  PubMed  CAS  Google Scholar 

  105. Sands BE, Winston BD, Salzberg B et al. RHIL-11 crohn’s study group. Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment Pharmacol Ther 2002; 16:399–406.

    Article  PubMed  CAS  Google Scholar 

  106. Wittig B, Scharzler C, Fohr N et al. Curative treatment of an experimentally induced colitis by a CD44 variant V7-specific antibody. J Immunol 1998; 161:1069–1073.

    PubMed  CAS  Google Scholar 

  107. Slonim AE, Bulone L, Damore MB et al. A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med 2000; 342:1633–1637.

    Article  PubMed  CAS  Google Scholar 

  108. Aronchick C, Dalke D, Ionna S et al. Medroxyprogesterone acetate is effective in the treatment of ulcerative colitis. Gastroenterology 2001; 120:A455.

    Google Scholar 

  109. Su CG, Wen X, Bailey ST et al. A novel therapy for colitis utilizing PPAE-gamma ligands to inhibit the epithelial inflammation response. J Clin Invest 1999; 104:383–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Holtmann, M.H., Neurath, M.F. (2006). From Immunogenic Mechanisms to Novel Therapeutic Approaches in Inflammatory Bowel Disease. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_15

Download citation

Publish with us

Policies and ethics