Skip to main content

Advertisement

Log in

Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

This article focuses on the observation that most hepatic ductular reactions (DRs) have ductal plate (DP)-like patterns. Considering old and recent data, it hypothesizes that in DR, dedifferentiation of hepatocytes in ductular metaplasia may lead to the de novo development of liver stem/progenitor cells (LPCs). The three recognized types of DR are reconsidered, and an additional fourth type, DR type 2B, is added. In DR type 1 whose pattern differs from DP, the pre-existing cholangiocytes multiply and adjust the ductal structure in response to micro-environmental changes induced by oedema and inflammation. This DR fails to establish new canaliculo-ductular connections. DRs types 2A, 2B and 3 represent progenitor cell-based reactions in DP configuration which establish canaliculo-ductular connections similar to DPs in embryonic and foetal liver development. DR type 2A occurs in periportal areas in chronic cholestatic and inflammatory diseases and is interpreted as a reaction of LPCs, which either pre-exist or derive from dedifferentiated hepatocytes. DR type 2B occurs in centrolobular areas and zones of parenchymal hypoxia, is induced by hypoxia and corresponds to “ductular metaplasia” like type 2A with a presumably similar cellular origin. DR type 3 relates to the well-recognized activation of LPCs that reside in the canals of Hering. All DRs in DP configuration play a role in progression of fibrosis in chronic liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ (1988) The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 8(6):1586–1595

    Article  PubMed  Google Scholar 

  2. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ (2009) Notch signaling controls liver development by regulating biliary differentiation. Development 136(10):1727–1739

    Article  PubMed  CAS  Google Scholar 

  3. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, Brunt EM et al (2004) Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39(6):1739–1745

    Article  PubMed  Google Scholar 

  4. Desmet VJ (1992) Modulation of the liver in cholestasis. J Gastroenterol Hepatol 7(3):313–323, Review

    Article  PubMed  CAS  Google Scholar 

  5. Liu Z, Sakamoto T, Ezure T, Yokomuro S, Murase N, Michalopoulos G, Demetris AJ (1998) Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium. Hepatology 28(5):1260–1268

    Article  PubMed  CAS  Google Scholar 

  6. Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23(4):385–396

    Article  PubMed  CAS  Google Scholar 

  7. Roskams T, Desmet V (1998) Ductular reaction and its diagnostic significance. Sem Diagn Pathol 15(4):259–269, Review

    CAS  Google Scholar 

  8. Kaplan MM (1993) Primary biliary cirrhosis. In: Schiff L, Schiff ER (eds) Diseases of the liver, 7th edn. Lippincott, Philadelphia, pp 377–410

    Google Scholar 

  9. Pacheco MC, Campbell KM, Bove KE (2009) Ductal plate malformation-like arrays in early explants after a Kasai procedure are independent of splenic malformation complex (heterotaxy). Pediatr Dev Pathol 12(5):355–360

    Article  PubMed  Google Scholar 

  10. Yeh H-Z, Schteingart CD, Hagey LR, Ton-Nu H-T, Bolder U, Gavrilkina MA, Steinbach JH, Hofmann AF (1997) Effect of side chain length on biotransformation, hepatic transport, and choleretic properties of chenodeoxycholyl homologues in the rodent: studies with Dinor- (C22), Nor- (C23) and chenodeoxycholic acid (C24). Hepatology 26:374–385

    Article  PubMed  CAS  Google Scholar 

  11. Roskams T, Yang SQ, Koteish A, Durnez A, DeVos R, Huang X, Achten R, Verslype C, Diehl AM (2003) Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am J Pathol 163(4):1301–1311

    Article  PubMed  CAS  Google Scholar 

  12. Desmet VJ (1992) Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology 16(4):1069–1083, Review

    Article  PubMed  CAS  Google Scholar 

  13. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, Yano H, Suzuki T, Matsuda M, Fujii H, Desmet VJ, Kojiro M, Roskams T (2008) Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 47(5):1544–1556

    Article  PubMed  CAS  Google Scholar 

  14. Zhang L, Theise N, Chua M, Reid LM (2008) The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 48(5):1598–1607

    Article  PubMed  CAS  Google Scholar 

  15. Wang Y, Yao HL, Cui CB, Wauthier E, Barbier C, Costello MJ, Moss N, Yamauchi M, Sricholpech M, Gerber D, Loboa EG, Reid LM (2010) Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 52(4):1443–1454

    Article  PubMed  Google Scholar 

  16. Sugiyama Y, Koike T, Shiojiri N (2010) Developmental changes of cell adhesion molecule expression in the fetal mouse liver. Anat Rec (Hoboken) 293:1698–1710

    CAS  Google Scholar 

  17. Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21(3):311–335, Review

    Article  PubMed  CAS  Google Scholar 

  18. Kinnman N, Goria O, Wendum D, Gendron MC, Rey C, Poupon R, Housset C (2001) Hepatic stellate cell proliferation is an early platelet-derived growth factor-mediated cellular event in rat cholestatic liver injury. Lab Invest 81(12):1709–1716

    PubMed  CAS  Google Scholar 

  19. Copple BL, Bai S, Burgoon LD, Moon JO (2011) Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int 31:230–244

    Article  PubMed  CAS  Google Scholar 

  20. Dranoff JA, Wells RG (2010) Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51(4):1438–1444, Review

    PubMed  Google Scholar 

  21. Theise ND (2010) Stem cell plasticity: recapping the decade, mapping the future. Exp Hematol 38(7):529–539

    Article  PubMed  Google Scholar 

  22. Roskams T, De Vos R, Van Eyken P, Myazaki H, Van Damme B, Desmet V (1998) Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol 29(3):455–463

    Article  PubMed  CAS  Google Scholar 

  23. Desmet V, Roskams T, Van Eyken P (1995) Ductular reaction in the liver. Pathol Res Pract 191(6):513–524

    PubMed  CAS  Google Scholar 

  24. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19(2):166–175

    Article  PubMed  CAS  Google Scholar 

  25. Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, Tuschl G, Mueller SO, Dooley S (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043

    Article  PubMed  CAS  Google Scholar 

  26. Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA (2009) Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 49(5):1625–1635

    Article  PubMed  Google Scholar 

  27. Alison MR, Brittan M, Lovell MJ, Wright NA (2006) Markers of adult tissue-based stem cells. Handb Exp Pharmacol 174:185–227

    Article  PubMed  CAS  Google Scholar 

  28. Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204(8):1973–1987

    Article  PubMed  CAS  Google Scholar 

  29. Deregibus MC, Tetta C, Camussi G (2010) The dynamic stem cell microenvironment is orchestrated by microvesicle-mediated transfer of genetic information. Histol Histopathol 25(3):397–404, Review

    PubMed  CAS  Google Scholar 

  30. Roskams T (2008) Relationships among stellate cell activation, progenitor cells, and hepatic regeneration. Clin Liver Dis 12(4):853–860, ix. Review

    Article  PubMed  Google Scholar 

  31. Koenig S, Krause P, Drabent B, Schaeffner I, Christ B, Schwartz P, Unthan-Fechner K, Probst I (2006) The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol 44(6):1115–1124

    Article  PubMed  CAS  Google Scholar 

  32. Taylor RA, Wang H, Wilkinson SE, Richards MG, Britt KL, Vaillant F, Lindeman GJ, Visvader JE, Cunha GR, St John J, Risbridger GP (2009) Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers. Stem Cells 27(12):3032–3042

    PubMed  CAS  Google Scholar 

  33. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132(6):1133–1149

    Article  PubMed  CAS  Google Scholar 

  34. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878

    Article  PubMed  CAS  Google Scholar 

  35. Hajkova P (2010) Epigenetic reprogramming—taking a lesson from the embryo. Curr Opin Cell Biol 22(3):342–350

    Article  PubMed  CAS  Google Scholar 

  36. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136(4):509–523, Review

    Article  PubMed  CAS  Google Scholar 

  37. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305

    Article  PubMed  CAS  Google Scholar 

  38. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, Dalgetty D, Black JR, Ross JA, Samuel K, Wang G, Daley GQ, Lee JH, Church GM, Forbes SJ, Iredale JP, Wilmut I (2010) Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51(1):329–335

    PubMed  CAS  Google Scholar 

  39. Slott PA, Liu MH, Tavoloni N (1990) Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Gastroenterology 99(2):466–477

    PubMed  CAS  Google Scholar 

  40. Masyuk TV, Ritman EL, LaRusso NF (2001) Quantitative assessment of the rat intrahepatic biliary system by three-dimensional reconstruction. Am J Pathol 158(6):2079–2088

    Article  PubMed  CAS  Google Scholar 

  41. Desmet VJ (1986) Current problems in diagnosis of biliary disease and cholestasis. Semin Liver Dis 6(3):233–245, Review

    Article  PubMed  CAS  Google Scholar 

  42. Jorgensen M (1973) A stereological study of intrahepatic bile ducts. 2. Bile duct proliferation in some pathological conditions. Acta Pathol Microbiol Scand A 81(5):663–669

    PubMed  CAS  Google Scholar 

  43. Desmet VJ (1987) Modulation of biliary epithelium. In: Reutter W, Popper H, Arias IM, Heinrich PC, Keppler D, Landmann L (eds) Modulation of liver cell expression. MTP, Lancaster, pp 195–214

    Google Scholar 

  44. Xia X, Francis H, Glaser S, Alpini G, LeSage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12(22):3553–3563, Review

    PubMed  CAS  Google Scholar 

  45. Clouzeau-Girard H, Guyot C, Combe C, Moronvalle-Halley V, Housset C, Lamireau T, Rosenbaum J, Desmoulière A (2006) Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest 86(3):275–285

    Article  PubMed  CAS  Google Scholar 

  46. Van Eyken P, Sciot R, Desmet VJ (1989) A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express ‘bile duct-type’ cytokeratins. Histopathology 15(2):125–135

    PubMed  Google Scholar 

  47. Michalopoulos GK, Barua L, Bowen WC (2005) Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41(3):535–544

    Article  PubMed  CAS  Google Scholar 

  48. Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A, Diehl AM (2007) Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest 87(5):499–514

    PubMed  CAS  Google Scholar 

  49. Stähelin BJ, Marti U, Zimmermann H, Reichen J (1999) The interaction of Bcl-2 and Bax regulates apoptosis in biliary epithelial cells of rats with obstructive jaundice. Virchows Arch 434(4):333–339

    Article  PubMed  Google Scholar 

  50. Abdel-Aziz G, Lebeau G, Rescan PY, Clément B, Rissel M, Deugnier Y, Campion JP, Guillouzo A (1990) Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. Am J Pathol 137(6):1333–1342

    PubMed  CAS  Google Scholar 

  51. Copple BL, Bustamante JJ, Welch TP, Kim ND, Moon JO (2009) Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes. Liver Int 29(7):1010–1021

    Article  PubMed  CAS  Google Scholar 

  52. Lin Q, Lee YJ, Yun Z (2006) Differentiation arrest by hypoxia. J Biol Chem 281(41):30678–30683

    Article  PubMed  CAS  Google Scholar 

  53. Pohl JF, Melin-Aldana H, Sabla G, Degen JL, Bezerra JA (2001) Plasminogen deficiency leads to impaired lobular reorganization and matrix accumulation after chronic liver injury. Am J Pathol 159(6):2179–2186

    Article  PubMed  CAS  Google Scholar 

  54. Baroni GS, Pastorelli A, Manzin A, Benedetti A, Marucci L, Solforosi L, Di Sario A, Brunelli E, Orlandi F, Clementi M, Macarri G (1999) Hepatic stellate cell activation and liver fibrosis are associated with necroinflammatory injury and Th1-like response in chronic hepatitis C. Liver 19(3):212–219

    Article  PubMed  CAS  Google Scholar 

  55. Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T (2006) Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int 26(10):1225–1233

    Article  PubMed  Google Scholar 

  56. Turányi E, Dezsö K, Csomor J, Schaff Z, Paku S, Nagy P (2010) Immunohistochemical classification of ductular reactions in human liver. Histopathology 57(4):607–614

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Tania Roskams for the helpful discussions and for providing the opportunity to keep in touch with progress in hepatopathology after my official retirement in 1996. Rita DeVos and Olivier Govaere deserve my gratitude for the help with the illustrations.

Conflict of interest

I declare that I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeer J. Desmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmet, V.J. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch 458, 251–259 (2011). https://doi.org/10.1007/s00428-011-1048-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1048-3

Keywords

Navigation