Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research

Abstract

Background/Objectives:

Bioimpedance is the collective term that describes safe, non-invasive methods to measure the electrical responses to the introduction of a low-level, alternating current into a living organism, and the biophysical models to estimate body composition from bioelectrical measurements. Although bioimpedance techniques have been used for more than 100 years to monitor assorted biological components, the desire to translate bioelectrical measurements into physiological variables advanced the creation of empirical prediction models that produced inconsistent results.

Subjects/Methods:

This paper succinctly reviews the origin, and critically evaluates the conceptual models and the implementation of bioimpedance in clinical research, including indirect assessment of assorted physiological functions and body composition (fluid volumes and fat-free mass), classification of hydration, regional fluid accumulation, prognosis in disease and wound healing.

Results:

Despite widespread and mounting interest in the use of bioimpedance to characterise body structure and function, most experimental findings reveal the limitations of existing physical models and reliance on multiple regression models for use in assessments of an individual.

Conclusions:

Contemporary applications of bioimpedance emphasise the value of bioimpedance variables per se in some novel biomedical applications with the objective of identifying opportunities for future outcome-based research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Grimnes S, Martinsen OG Bioimpedance and Bioelectricity Basics. Academic Press: London, UK, 2000.

    Google Scholar 

  2. Penny BC . Theory and cardiac applications of electrical impedance measurements. CRC Crit Rev Biomed Eng 1986; 13: 227–281.

    Google Scholar 

  3. Valentinuzzi ME, Morucci J-P, Felice C . Bioelectrical impedance techniques in medicine. Part II: Monitoring of physiological events. Crit Rev Biomed Eng 1996; 24: 353–466.

    Article  CAS  Google Scholar 

  4. Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG . Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 2003; 10: 669–680.

    Article  Google Scholar 

  5. Buchholz AC, Bartok C, Schoeller DA . The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 2004; 19: 433–446.

    Article  Google Scholar 

  6. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 2004; 23: 1226–1243.

    Article  Google Scholar 

  7. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM et al. Bioelectrical impedance analysis – part II: utilization in clinical practice. Clin Nutr 2004; 23: 1430–1453.

    Article  Google Scholar 

  8. Earthman C, Traughber D, Dobratz J, Howell W . Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract 2007; 22: 389–405.

    Article  Google Scholar 

  9. Fricke H . A mathematical treatment of the electrical conductivity and capacity of disperse systems. II. The capacity of a suspension of conducting spheroids surrounded by non-conducting membrane for a current of low frequency. Phys Rev 1925; 26: 678–681.

    Article  Google Scholar 

  10. Cole KS Membranes, Ions and Impulses: A Chapter of Classical Biophysics. University of California Press: Berkley, CA, 1972.

    Google Scholar 

  11. Lukaski HC . Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am J Clin Nutr 1996; 64: 397S–404S.

    Article  CAS  Google Scholar 

  12. Foster KR, Lukaski HC . Bioelectrical impedance—what does it measure? Am J Clin Nutr 1996; 64: 388S–396S.

    Article  CAS  Google Scholar 

  13. Barnett A, Bagno S . The physiological mechanisms involved in the clinical measure of phase angle. Am J Physiol 1936; 114: 366–382.

    Article  Google Scholar 

  14. Matthie JR . Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices 2008; 5: 239–261.

    Article  Google Scholar 

  15. DeLorenzo A, Andreoli A, Matthie JR, Withers P . Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol 1997; 82: 1542–1558.

    Article  CAS  Google Scholar 

  16. Hanai T . Electrical properties of emulsions. In: Sherman PH (ed). Emulsion Science. Academic Press: London, UK, 1968 pp 354–477.

    Google Scholar 

  17. Matthie JR . Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005; 99: 780–781.

    Article  Google Scholar 

  18. Jaffrin MY, Morel H . Body fluid volume measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Engin Physics 2008; 30: 1257–1269.

    Article  Google Scholar 

  19. Nyboer J, Bagno S, Barnett A, Halsey RH . Radiocardiograms: electrical impedance of the heart in relation to electrocardiograms and heart sounds. J Clin Invest 1940; 19: 963.

    Google Scholar 

  20. Nyboer J . Electrical impedance plethysmography: a physical and physiological approach to peripheral vascular study. Circulation 1950; 2: 811–821.

    Article  CAS  Google Scholar 

  21. McAdams ET, Jossinet J . Tissue impedance: an historical overview. Physiol Meas 1995; 16 (Suppl 3A), A1–A13.

    Article  CAS  Google Scholar 

  22. Tsadok S . The historical evolution of bioimpedance. AACN Clin Issues 1999; 10: 371–84.

    Article  CAS  Google Scholar 

  23. Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH . Development and evaluation of an impedance cardiac output system. Aerospace Med 37: 1208–1212.

  24. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML . Impedance cardiography: the next vital sign technology? Chest 2003; 123: 2028–2033.

    Article  Google Scholar 

  25. Napoli AM . Physiologic and clinical principles behind noninvasive resuscitation techniques and cardiac output monitoring. Cardiol Res Pract 2012; 2012: 531908.

    Article  Google Scholar 

  26. Tang WHW, Tong W . Measuring impedance in congestive heart failure: current options and clinical applications. Am Heart J 2009; 157: 402–411.

    Article  Google Scholar 

  27. Keren H, Burkhoff D, Squara P . Evaluation of a noninvasive cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol 2007; 293: H583–H589.

    Article  CAS  Google Scholar 

  28. Squara P, Denjean D, Estagnasie P, Brusset P, Dib JC, Dubois C . Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med 2007; 33: 1191–1194.

    Article  Google Scholar 

  29. Visser KR, Lamberts R, Zijlstra WG . Investigation of the origin of the impedance cardiogram by means of exchange transfusion of stroma free hemoglobin solution of the dog. Cardiovasc Res 1990; 24: 24–32.

    Article  CAS  Google Scholar 

  30. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI . Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–817.

    Article  CAS  Google Scholar 

  31. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller DA, Friedl K et al. Development of bioelectrical impedance prediction equations for body composition with the use of a multi-component model for use in epidemiologic surveys. Am J Clin Nutr 2003; 77: 331–340.

    Article  CAS  Google Scholar 

  32. Lukaski HC . Evaluation of body composition: why and how? Mediterr J Nutr Metab 2009; 2: 1–10 2009.

    Article  Google Scholar 

  33. Hoffer EC, Meador CK, Simpson DC . Correlation of whole-body impedance with total body water volume. J Appl Physiol 1969; 27: 531–534.

    Article  CAS  Google Scholar 

  34. Segal KR, Lutin B, Presta E, Wang J, Van Itallie TB . Estimation of body composition by electrical impedance methods: a comparative study. J Appl Physiol 1985; 58: 1565–1571.

    Article  CAS  Google Scholar 

  35. Kushner RF, Schoelller DA . Estimation of body water by bioelectrical impedance analysis. Am J Clin Nutr 1986; 44: 417–424.

    Article  CAS  Google Scholar 

  36. Lukaski HC, Bolonchuk WW . Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med 1988; 59: 1163–1169.

    CAS  PubMed  Google Scholar 

  37. Ellis KJ . Human body composition: in vivo methods. Physiol Rev 2000; 80: 649–680.

    Article  CAS  Google Scholar 

  38. Thomasset A . Bio-electrical properties of tissue impedance measurements. Lyon Med 1962; 207: 107–118.

    Google Scholar 

  39. Thomasset A . Bio-electrical properties of tissues. Lyon Med 1963; 209: 1325–1352.

    CAS  PubMed  Google Scholar 

  40. Papathakis PC, Rollins NC, Brown KH, Bennish ML, Van Loan MD . Comparison of isotope dilution with bioimpedance spectroscopy and anthropometry for assessment of body composition in asymptomatic HIV-infected and HIV-uninfected breastfeeding mothers. Am J Clin Nutr 2005; 82: 538–546.

    Article  CAS  Google Scholar 

  41. Van Loan MD, Kopp LE, King JC, Wong WW, Mayclin PL . Fluid changes during pregnancy: use of bioimpedance spectroscopy. J Appl Physiol 1995; 78: 1037–1042.

    Article  CAS  Google Scholar 

  42. Earthman CP, Matthie JR, Reid PM, Harper IT, Ravussin E, Howell WH . A comparison of bioimpedance methods for detection of body cell mass change in HIV infection. J Appl Physiol 2000; 88: 944–956.

    Article  CAS  Google Scholar 

  43. Cox-Reijven PL, van Kreel B, Soeters PB . Accuracy of bioelectrical impedance spectroscopy in measuring changes in body composition during severe weight loss. J Parenter Enteral Nutr 2002; 26: 120–127.

    Article  Google Scholar 

  44. Mager JR, Sibley SD, Beckman TR, Kellogg TA, Earthman CP . Multifrequency bioelectrical impedance analysis and bioimpedance spectroscopy for monitoring fluid and body cell mass changes after gastric bypass surgery. Clin Nutr 2008; 27: 832–841.

    Article  Google Scholar 

  45. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A et al. Body fluid volume determination via body composition spectrometry in health and disease. Physiol Meas 2006; 27: 921–933.

    Article  Google Scholar 

  46. Baracos V, Caserotti P, Earthman CP, Fields D, Gallagher D, Hall KD et al. Advances in the science and application of body composition measurement. J Parenter Enteral Nutr 2012; 36: 96–107.

    Article  Google Scholar 

  47. Savastano S, Belfiore A, Di Somma C, Mauriello C, Rossi A, Pizza G et al. Validity of bioelectrical impedance analysis to estimate body composition changes after bariatric surgery in premenopausal morbidly obese women. Obes Surg 2010; 20: 332–339.

    Article  Google Scholar 

  48. Vine SM, Painter PL, Kuskowski MA, Earthman CP . Bioimpedance spectroscopy for the estimation of fat-free mass in end-stage renal disease. E Spen Eur E J Clin Nutr Metabol 2011; 6: e1–e6.

    Article  Google Scholar 

  49. Ellegård LH, Ahlen M, Körner U, Lundholm KG, Plank LD, Bosaeus IG . Bioelectric impedance spectroscopy underestimates fat-free mass compared to dual energy X-ray absorptiometry in incurable cancer patients. Eur J Clin Nutr 2009; 63: 794–801.

    Article  Google Scholar 

  50. Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM . Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity 2006; 14: 2064–2070.

    Article  Google Scholar 

  51. Armstrong LE . Assessing hydration status: the elusive gold standard. J Am Coll Nutr 2007; 26 (5 Suppl), 575S–584S.

    Article  Google Scholar 

  52. Peacock WF, Soto KM . Current techniques of fluid status assessment. Cong eart Fail 2010; 16 (Suppl 1), S45–S51.

    Article  Google Scholar 

  53. Lukaski HC, Piccoli A . Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In: Preedy V (ed). Handbook of Anthropometry. Springer: London, UK, 2012 287–315.

    Chapter  Google Scholar 

  54. Piccoli A, Rossi B, Pillon L, Bucciante G . A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int 1994; 46: 534–539.

    Article  CAS  Google Scholar 

  55. Lukaski HC, Hall CB, Siders WA . Assessment of change in hydration in women during pregnancy and postpartum with bioelectrical impedance vectors. Nutrition 2007; 23: 543–550.

    Article  Google Scholar 

  56. Piccoli A . Identification of operational clues to dry weight prescription in hemodialysis using bioelectrical impedance vector analysis. The Italian Hemodialysis Bioelectrical Impedance Analysis Study Group (HD-BIA). Kidney Int 1998; 53: 1036–1043.

    Article  CAS  Google Scholar 

  57. Valle R, Aspromonte N, Milani L, Peacock FW, Maisel AS, Santini M et al. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of the combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail Rev 2011; 16: 519–529.

    Article  CAS  Google Scholar 

  58. Piccoli A, Cogdognotto M, Cianci V, Vettore G, Zaninotto M, Plebani M . et al. Differentiation of cardiac and non-cardiac dyspnea using bioelectrical impedance vector analysis (BIVA). J Card Fail 2012; 18: 226–232.

    Article  Google Scholar 

  59. Di Somma S, Lukaski HC, Codognotto M, Peacock FW, Fiorini F, Aspromonte N et al. Consensus paper on the use of BIVA (bioelectrical impedance vector analysis) in medicine for the management of body hydration. Emerg Care J 2012; 4: 6–14.

    Google Scholar 

  60. Valle R, Aspromonte N . Use of brain natriuretic peptide and bioimpedance to guide therapy in heart failure patients. Contrib Nephrol 2010; 164: 209–216.

    Article  Google Scholar 

  61. Codognotto M, Piazza M, Frigatti P, Piccoli A . Influence of localized edema on whole-body and segmental bioelectrical impedance. Nutrition 2008; 24: 569–574.

    Article  Google Scholar 

  62. Ward LC, Bunce IH, Cornish BH, Mirolo BR, Thomas BJ, Jones LC . Multi-frequency bioelectrical impedance augments the diagnosis and management of lymphoedema of post-mastectomy patients. Eur J Clin Nutr 1992; 22: 751–754.

    CAS  Google Scholar 

  63. Cornish BH, Jacobs A, Thomas BJ, Ward LC . Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas 1999; 20: 241–250.

    Article  CAS  Google Scholar 

  64. Cornish BH, Chapman M, Hirst C, Mirolo B, Bunce IH, Ward LC et al. Early diagnosis of lymphedema using multifrequency bioimpedance. Lymphology 2001; 34: 2–11.

    CAS  PubMed  Google Scholar 

  65. Ward LC, Winall A, Isenring E, Hills A, Czerniec S, Dylke E et al. Assessment of bilateral limb lymphedema by bioelectrical impedance spectroscopy. Int J Gynecol Cancer 2011; 21: 409–418.

    Article  Google Scholar 

  66. Czerniec SA, Ward LC, Lee M-J, Refschauge KM, Beith J, Kilbreath SL . Segmental measurement of breast cancer-related arm lymphoedema using perometry and bioimpedance spectroscopy. Support Care Cancer 2011; 19: 703–710.

    Article  Google Scholar 

  67. Spence DW, Pomeranz B . Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiol Meas 1996; 17: 57–69.

    Article  CAS  Google Scholar 

  68. Keese CR, Wegener J, Walker SR, Giaver I . Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci 2004; 101: 1554–59.

    Article  CAS  Google Scholar 

  69. Lukaski HC, Moore MM . Bioelectrical impedance assessment of wound healing. J Diabetes Sci Technol 2012; 6: 209–212.

    Article  Google Scholar 

  70. Wagner DR, Jeter KF, Tintle T, Martin MS, Long JM . Bioelectrical impedance as a discriminator of pressure ulcer risk. Adv Wound Care 1996; 9: 30–37.

    CAS  PubMed  Google Scholar 

  71. Strobäus N, Pirlich M, Valentini L, Schulzke JD, Norman K . Determinants of bioelectrical phase angle in disease. Brit J Nutr 2012; 107: 1217–1220.

    Article  Google Scholar 

  72. Piccoli A, Pillon L, Dumler F . Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition 2002; 18: 153–167.

    Article  Google Scholar 

  73. Barbarosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN . Bioelectrical impedance analysis: population values for phase angle by age and sex. Am J Clin Nutr 2005; 82: 49–52.

    Article  Google Scholar 

  74. Bosy-Westphal A, Danielzik S, Dörnhöfer RP, Later W, Wiese S, Muller MJ . Phase angle from bioelectrical impedance analysis: population reference values by age, sex and body mass index. J Parenter Enteral Nutr 2006; 30: 309–316.

    Article  Google Scholar 

  75. Lukaski HC, Singer MG . Phase angle as a prognostic indicator in cancer. Proc Spring Am Assoc Art Int Symposium Comp Physiol 2011; SS-11-04: 37–40.

    Google Scholar 

  76. Norman K, Strobäus N, Zocher D, Bosy-Westphal A, Szramek A, Scheufele R et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life and mortality in patients with cancer. Am J Clin Nutr 2010; 92: 612–619.

    Article  CAS  Google Scholar 

  77. Rutkove SB, Aaron R, Schiffman CA . Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve 2002; 25: 390–397.

    Article  Google Scholar 

  78. Tarulli AW, Duggal N, Esper GJ, Garmirian LP, Fogerson PM, Lin CH et al. Electrical impedance myography in the assessment of disuse atrophy. Arch Phys Med Rehabil 2009; 90: 1806–1810.

    Article  Google Scholar 

  79. Rutkove SB . Electrical impedance myography: background, current state, and future directions. Muscle Nerve 2009; 40: 936–946.

    Article  Google Scholar 

  80. Esper GJ, Schiffman CA, Aaron R, Lee KS, Rutkove S . Assessing neuromuscular disease with multifrequency electrical impedance myography. Muscle Nerve 2006; 34: 595–602.

    Article  Google Scholar 

Download references

Acknowledgements

Publication of this article was supported by a grant from seca Gmbh & Co. KG, Hamburg, Germany. HCL has received consulting fees from IPGDx, LLC (Harrisville, MI, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C Lukaski.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukaski, H. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 67 (Suppl 1), S2–S9 (2013). https://doi.org/10.1038/ejcn.2012.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.149

Keywords

This article is cited by

Search

Quick links