Skip to main content
Log in

Pharmacokinetics of Budesonide (Entocort™ EC) Capsules for Crohn’s Disease

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

This overview summarises available pharmacokinetic data on budesonide capsules (Entocort™ EC), approved for the treatment of mild-to-moderate active Crohn’s disease involving the ileum and/or ascending colon and for prolongation of symptom control. Budesonide is a locally-acting glucocorticosteroid with an extensive, primarily hepatic, metabolism after oral administration. It is rapidly absorbed and biotransformed by cytochrome P450 (CYP) 3A to metabolites with negligible glucocorticoid activity.

Entocort™ EC, a pH- and time-dependent oral formulation of budesonide, was developed to optimise drug delivery to the ileum and throughout the colon. Pharmaco-scintigraphic studies have confirmed that the Entocort™ EC formulation delays budesonide absorption and prolongs the rate of elimination but maintains complete absorption. This improves the delivery of budesonide to the intestinal lumen relative to a plain formulation. A low systemic availability of 9–21% indicates extensive first-pass elimination. Food appears to have little impact on the absorption of budesonide from Entocort™ EC capsules and the pharmacokinetics are dose-proportional between 3 and 15mg. On average, systemic availability was 2.5-fold higher in patients with cirrhosis compared with healthy controls; however, mild liver impairment had little effect on systemic exposure. Pharmacokinetics appear unaffected by gender and age, although this has not been tested in younger children. Renal impairment is not expected to have an impact on the kinetics of Entocort™ EC.

Budesonide is unlikely to inhibit the metabolism of other drugs, including CYP3A4 substrates, mainly because of the very low plasma concentrations obtained with the compound even after high doses of Entocort™ EC capsules. Strong CYP3A4 inhibitors, such as ketoconazole, will inhibit the metabolism of budesonide, resulting in several-fold increases in the area under the concentration-time curve of budesonide. Also, grapefruit juice intake may increase systemic availability of budesonide, probably by inhibition of intestinal CYP3A4 activity. Unlike prednisolone, oral contraceptives do not alter plasma budesonide concentrations. An increased pH obtained by gastric acid inhibitory drugs, such as omeprazole, does not affect the pharmacokinetics of budesonide.

In summary, budesonide capsules (Entocort™ EC) possess many pharmacological features that make the formulation well adapted for a targeted treatment of inflammatory disorders, such as Crohn’s disease involving the ileum and ascending colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Table III
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Spencer CM, McTavish D. Budesonide: a review of its pharmacological properties and therapeutic efficacy in inflammatory bowel disease. Drugs 1995; 50: 854–72

    Article  PubMed  CAS  Google Scholar 

  2. Salmi M, Jalkanen S. Endothelial ligands and homing of mucosal leukocytes in extraintestinal manifestations of EBD. Inflamm Bowel Dis 1998; 4: 149–56

    PubMed  CAS  Google Scholar 

  3. Farrell RJ, Banerjee S, Peppercorn MA. Recent advances in inflammatory bowel disease. Crit Rev Clin Lab Sci 2001; 38: 33–108

    Article  PubMed  CAS  Google Scholar 

  4. Schreiber S. Inflammatory bowel disease: immunologic concepts. Hepatogastroenterology 2000; 47(31): 15–28

    PubMed  CAS  Google Scholar 

  5. Cunliffe RN, Scott BB. Review article: monitoring for drug side-effects in inflammatory bowel disease. Aliment Pharmacol Ther 2002; 16: 647–62

    Article  PubMed  CAS  Google Scholar 

  6. Shah SA, Peppercorn MA. A comparative review of topical therapies for inflammatory bowel disease. Clin Immunother 1996; 6: 117–29

    Article  Google Scholar 

  7. Levy G. Targeted drug delivery: some pharmacokinetic considerations. Pharm Res 1987; 4: 3–4

    Article  PubMed  CAS  Google Scholar 

  8. Lindqvist N, Andersson M, Bende M, et al. The clinical efficacy of budesonide in hay fever treatment is dependent on topical nasal application. Clin Exp Allergy 1989; 19: 71–6

    Article  PubMed  CAS  Google Scholar 

  9. Toogood JH, Frankish CW, Jennings BH, et al. A study of the mechanism of the antiasthmatic action of inhaled budesonide. J Allergy Clin Immunol 1990; 85: 872–80

    Article  PubMed  CAS  Google Scholar 

  10. Agertoft L, Pedersen S. Effect of long-term treatment with inhaled budesonide on adult height in children with asthma. N Engl J Med 2000; 343: 1064–9

    Article  PubMed  CAS  Google Scholar 

  11. Greenberg GR, Feagan BG, Martin F, et al. Oral budesonide for active Crohn’s disease. Canadian Inflammatory Bowel Disease Study Group. N Engl J Med 1994; 331: 836–41

    Article  PubMed  CAS  Google Scholar 

  12. Östergaard-Thomsen O, Cortot A, Jewell D, et al. A comparison of budesonide and mesalamine for active Crohn’s disease. International Budesonide-Mesalamine Study Group. N Engl J Med 1998; 339: 370–4

    Article  Google Scholar 

  13. Rutgeerts P, Löfberg R, Malchow H, et al. A comparison of budesonide with prednisolone for active Crohn’s disease. N Engl J Med 1994; 331: 842–5

    Article  PubMed  CAS  Google Scholar 

  14. Campieri M, Ferguson A, Doe W, et al. Oral budesonide is as effective as oral prednisolone in active Crohn’s disease. The Global Budesonide Study Group. Gut 1997; 41: 209–14

    Article  PubMed  CAS  Google Scholar 

  15. Brattsand R. Overview of newer glucocorticosteroid preparations for inflammatory bowel disease. Can J Gastroenterol 1990; 4: 407–14

    Google Scholar 

  16. Gustafsson B, Persson CG. Allergen-induced mucosal exudation of plasma into rat ileum and its inhibition by budesonide. Scand J Gastroenterol 1992; 27: 587–93

    Article  PubMed  CAS  Google Scholar 

  17. Gustafsson B, Miller-Larsson A, Persson CG. Topical and oral anti-inflammatory activity of budesonide compared with oral prednisolone in an animal model using allergen-induced gut mucosal exudation of plasma as a marker. Scand J Gastroenterol 2001; 36: 1062–6

    Article  PubMed  CAS  Google Scholar 

  18. Wikberg M, Ulmius J, Ragnarsson G. Review article: targeted drug delivery in treatment of intestinal diseases. Aliment Pharmacol Ther 1997; 11 Suppl. 3: 109–15

    PubMed  Google Scholar 

  19. Möllmann HW. Pharmacological basis for the use of nonsystemic oral and rectal steroids in inflammatory bowel disease. In: Tytgat GNJ, Bartelsman JFM, van Deventer SJH, editors. Inflammatory bowel diseases. Proceedings of the Falk Symposium No. 85; 1995 Jun 29–Jul 1; Den Haag. Kluwer Academic Publishers, 1995: 633–46

    Google Scholar 

  20. Data on file, AstraZeneca, Lund, Sweden

  21. Aherne GW, Littleton P, Thalen A, et al. A sensitive radioimmunoassay for budesonide in plasma. J Steroid Biochem 1982; 17: 559–65

    Article  PubMed  CAS  Google Scholar 

  22. Lindberg C, Blomqvist A, Paulson J. Determination of (22R,S)budesonide in human plasma by automated liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom 1992; 21: 525–33

    Article  PubMed  CAS  Google Scholar 

  23. Lundin PDP, Edsbäcker S, Bergstrand M, et al. Pharmacokinetics of budesonide controlled ileal release capsules in children and adults with active Crohn’s disease. Aliment Pharmacol Ther 2003; 17(1): 85–92

    Article  PubMed  CAS  Google Scholar 

  24. Madsen JL. Gastrointestinal transit measurements: a scintigraphic method. Dan Med Bull 1994; 41: 398–411

    PubMed  CAS  Google Scholar 

  25. Wilding IR, Coupe AJ, Davis SS. The role of gamma-scintigraphy in oral drug delivery. Adv Drug Deliv Rev 2001; 46: 103–24

    Article  PubMed  CAS  Google Scholar 

  26. Edsbäcker S, Larsson P, Wollmer P. Gut delivery of budesonide, a locally active corticosteroid, from plain and controlledrelease capsules. Eur J Gastroenterol Hepatol 2002; 14: 1357–62

    Article  PubMed  Google Scholar 

  27. Edsbäcker S, Bengtsson B, Larsson P, et al. A pharmacoscintigraphic evaluation of oral budesonide given as controlledrelease (Entocort™) capsules. Aliment Pharmacol Ther 2003; 17(4): 525–36

    Article  PubMed  Google Scholar 

  28. Ryrfeldt A, Andersson P, Edsbäcker S, et al. Pharmacokinetics and metabolism of budesonide, a selective glucocorticoid. Eur J Respir Dis Suppl 1982; 122: 86–95

    PubMed  CAS  Google Scholar 

  29. Thorsson L, Edsbäcker S, Conradson TB. Lung deposition of budesonide from turbuhaler is twice that from a pressurized metered-dose inhaler P-MDI. Eur Respir J 1994; 7: 1839–44

    Article  PubMed  CAS  Google Scholar 

  30. Agertoft L, Andersen A, Weibull E, et al. Systemic availability and pharmacokinetics of nebulised budesonide in preschool children. Arch Dis Child 1999; 80: 241–7

    Article  PubMed  CAS  Google Scholar 

  31. Jönsson G, Åstrom A, Andersson P. Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab Dispos 1995; 23: 137–42

    PubMed  Google Scholar 

  32. Edsbäcker S, Andersson P, Lindberg C, et al. Liver metabolism of budesonide in rat, mouse, and man: comparative aspects. Drug Metab Dispos 1987; 15: 403–11

    PubMed  Google Scholar 

  33. Edsbäcker S, Jönsson S, Lindberg C, et al. Metabolic pathways of the topical glucocorticoid budesonide in man. Drug Metab Dispos 1983; 11: 590–6

    PubMed  Google Scholar 

  34. Ryrfeldt A, Edsbäcker S, Pauwels R. Kinetics of the epimeric glucocorticoid budesonide. Clin Pharmacol Ther 1984; 35: 525–30

    Article  PubMed  CAS  Google Scholar 

  35. Brattsand R, Thalen A, Roempke K, et al. Influence of 16 alpha, 17 alpha-acetal substitution and steroid nucleus fluorination on the topical to systemic activity ratio of glucocorticoids. J Steroid Biochem 1982; 16: 779–86

    Article  PubMed  CAS  Google Scholar 

  36. Cortijo J, Urbieta E, Bort R, et al. Biotransformation in vitro of the 22R and 22S epimers of budesonide by human liver, bronchus, colonic mucosa and skin. Fundam Clin Pharmacol 2001; 15: 47–54

    Article  PubMed  CAS  Google Scholar 

  37. Andersson P, Ryrfeldt Å. Biotransformation of the topical glucocorticoids budesonide and beclomethasone 17 alpha,21-dipropionate in human liver and lung homogenate. J Pharm Pharmacol 1984; 36: 763–5

    Article  PubMed  CAS  Google Scholar 

  38. Seidegård J, Randvall G, Valeur A, et al. Regional differences in gut wall CYP3A activity studied with a novel device in healthy subjects [abstract]. EUFEPS: New Safe Medicines Faster; 2002 Oct 20–23: Stockholm

    Google Scholar 

  39. Nyberg L, Vatn M, Aasen S, et al. Uptake of budesonide from ileum, cecum, and proximal colon studied by means of an intestinal telemetric remote-release capsule [abstract]. Gastroenterology 1999; 116: A786

    Google Scholar 

  40. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40: 159–68

    Article  PubMed  CAS  Google Scholar 

  41. Barnes KM, Dickstein B, Cutler Jr GB, et al, editor. Steroid treatment, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 1996; 35: 4820–7

    Google Scholar 

  42. Henriksson G, Norlander T, Zheng X, et al. Expression of P-glycoprotein 170 in nasal mucosa may be increased with topical steroids. Am J Rhinol 1997; 11: 317–21

    Article  PubMed  CAS  Google Scholar 

  43. Espmarker U, Kristensson M, Langkilde F. In vitro study of budesonide capsules (Entocort® EC) 3mg after exposure of the granules to apple sauce [abstract]. Am J Gastroenterol 2002; 97: S259

    Article  Google Scholar 

  44. Cvetkovic S, Edsbäcker S, Ejerblad S, et al. Intraluminal concentrations of budesonide following administration of Entocort capsules in subjects with ileostomy [abstract]. Gut 1997; 41: A222

    Google Scholar 

  45. Miller LR, Vitti R, Maurer A, et al. Small intestinal transit in symptomatic Crohn’s disease [abstract]. Gastroenterology 1989; 96: A344

    Google Scholar 

  46. Hebden JM, Blackshaw PE, Perkins AC, et al. Limited exposure of the healthy distal colon to orally-dosed formulation is further exaggerated in active left-sided ulcerative colitis. Aliment Pharmacol Ther 2000; 14: 155–61

    Article  PubMed  CAS  Google Scholar 

  47. Miller-Larsson A, Gustafsson B, Persson CG, et al. Gut mucosal uptake and retention characteristics contribute to the high intestinal selectivity of budesonide compared with prednisolone in the rat. Aliment Pharmacol Ther 2001; 15: 2019–25

    Article  PubMed  CAS  Google Scholar 

  48. Schreiber S, Schottelius A, Baumann J, et al. Immunopharmacology of budesonide induced inhibition of pro-inflammatory cytokine secretion by IBD mononuclear phagocytes [abstract]. Gastroenterology 1996; 110: A1011

    Google Scholar 

  49. Miller-Larsson A, Gustafsson B, Jerre A, et al. Intestinal esterification of budesonide (Entocort® EC) may prolong corticosteroid activity [abstract]. Gastroenterology 2002; 122: A396

    Google Scholar 

  50. Hochberg RB. Biological esterification of steroids. Endocr Rev 1998; 19: 331–48

    Article  PubMed  CAS  Google Scholar 

  51. Tunek A, Sjödin K, Hallström G. Reversible formation of fatty acid esters of budesonide, an antiasthma glucocorticoid, in human lung and liver microsomes. Drug Metab Dispos 1997; 25: 1311–7

    PubMed  CAS  Google Scholar 

  52. Edsbäcker S, Brattsand R. Budesonide fatty-acid esterification: a novel mechanism prolonging binding to airway tissue: review of available data. Ann Allergy Asthma Immunol 2002; 88: 609–16

    Article  PubMed  Google Scholar 

  53. Schwab M, Klotz U. Pharmacokinetic considerations in the treatment of inflammatory bowel disease. Clin Pharmacokinet 2001; 40: 723–51

    Article  PubMed  CAS  Google Scholar 

  54. Seidegård J, Simonsson M, Edsbäcker S. Effect of an oral contraceptive on the plasma levels of budesonide and prednisolone and the influence on plasma cortisol. Clin Pharmacol Ther 2000; 67: 373–81

    Article  PubMed  Google Scholar 

  55. Milsap RL, George DE, Szefler SJ, et al. Effect of inflammatory bowel disease on absorption and disposition of prednisolone. Dig Dis Sci 1983; 28: 161–8

    Article  PubMed  CAS  Google Scholar 

  56. Edsbäcker S, Larsson P, Höglund P. Systemic exposure and availability of orally administered budesonide capsules (Entocort® EC) vs methylprednisolone [abstract]. Am J Gastroenterol 2002; 97: S262

    Article  Google Scholar 

  57. Edsbäcker S, Nilsson M, Larsson P. A cortisol suppression dose-response comparison of budesonide in controlled ileal release capsules with prednisolone. Aliment Pharmacol Ther 1999; 13: 219–24

    Article  PubMed  Google Scholar 

  58. Löfberg R, Danielsson Å, Salde L. Oral budesonide in active Crohn’s disease. Aliment Pharmacol Ther 1993; 7: 611–6

    Article  PubMed  Google Scholar 

  59. Tremaine WJ, Hanauer SB, Katz S, et al. Budesonide CIR capsules (once or twice daily divided-dose) in active Crohn’s disease: a randomized placebo-controlled study in the United States. Am J Gastroenterol 2002; 97: 1748–54

    Article  PubMed  CAS  Google Scholar 

  60. Hochhaus G, Wagner M, Möllmann HW. Cortisol suppression after oral delivery of budesonide in pH-modified release capsules. Gastroenterology 1998; 114: A996–7

    Article  Google Scholar 

  61. Nilsson M, Edsbäcker S, Larsson P, et al. Dose-proportional kinetics of budesonide controlled ileal release capsules [abstract]. Gastroenterology 1995; 108: A885

    Article  Google Scholar 

  62. Naber A, Olaison G, Smedh K, et al. Pharmacokinetics of budesonide controlled ileal release capsules in active Crohn’s disease [abstract]. Gastroenterology 1996; 110: A977

    Google Scholar 

  63. Lundin P, Naber T, Nilsson M, et al. Effect of food on the pharmacokinetics of budesonide controlled ileal release capsules in patients with active Crohn’s disease. Aliment Pharmacol Ther 2001; 15: 45–51

    Article  PubMed  CAS  Google Scholar 

  64. Pedersen S, Steffensen G, Ekman I, et al. Pharmacokinetics of budesonide in children with asthma. Eur J Clin Pharmacol 1987; 31: 579–82

    Article  PubMed  CAS  Google Scholar 

  65. Seidegård J. Reduction of the inhibitory effect of ketoconazole on budesonide pharmacokinetics by separation of their time of administration. Clin Pharmacol Ther 2000; 68: 13–7

    Article  PubMed  Google Scholar 

  66. Edsbäcker S, Larsson P, Bergstrand M. Pharmacokinetics of budesonide controlled-release capsules when taken with omeprazole. Aliment Pharmacol Ther 2003; 17(3): 403–8

    Article  PubMed  Google Scholar 

  67. Hamedani R, Feldman RD, Feagan BG. Review article: drug development in inflammatory bowel disease: budesonide: a model of targeted therapy. Aliment Pharmacol Ther 1997; 11 Suppl. 3: 98–107

    Article  PubMed  CAS  Google Scholar 

  68. Yang YX, Lichtenstein GR. Corticosteroids in Crohn’s disease. Am J Gastroenterol 2002; 97: 803–23

    Article  PubMed  CAS  Google Scholar 

  69. Kane S, Schoenfeld P, Sandborn W, et al. Systematic review: the effectiveness of budesonide therapy for Crohn’s disease. Aliment Pharmacol Ther 2002; 16(8): 1509–17

    Article  PubMed  CAS  Google Scholar 

  70. Gross V, Andus T, Caesar I, et al. Oral pH-modified release budesonide versus 6-methylprednisolone in active Crohn’s disease. German/Austrian Budesonide Study Group. Eur J Gastroenterol Hepatol 1996; 8: 905–9

    PubMed  CAS  Google Scholar 

  71. Bar-Meir S, Chowers Y, Lavy A, et al. Budesonide versus prednisone in the treatment of active Crohn’s disease. The Israeli Budesonide Study Group. Gastroenterology 1998; 115: 835–40

    Article  PubMed  CAS  Google Scholar 

  72. Haynes RB, Taylor DW, Sackett DL. Compliance in healthcare. Baltimore (MD): The John Hopkins University Press, 1979

    Google Scholar 

  73. Farmer KC, Jacobs EW, Phillips CR. Long-term patient compliance with prescribed regimens of calcium channel blockers. Clin Ther 1994; 16: 316–26

    PubMed  CAS  Google Scholar 

  74. Eisen SA, Miller DK, Woodward RS, et al. The effect of prescribed daily dose frequency on patient medication compliance. Arch Intern Med 1990; 150: 1881–4

    Article  PubMed  CAS  Google Scholar 

  75. Cramer JA, Mattson RH, Prevey ML, et al. How often is medication taken as prescribed: a novel assessment technique. JAMA 1989; 261: 3273–7

    Article  PubMed  CAS  Google Scholar 

  76. Morgan ET. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 2001; 29: 207–12

    PubMed  CAS  Google Scholar 

  77. D’Haens G, Verstraete A, Cheyns K, et al. Bone turnover during short-term therapy with methylprednisolone or budesonide in Crohn’s disease. Aliment Pharmacol Ther 1998; 12: 419–24

    Article  PubMed  Google Scholar 

  78. Schoon E, Bollani S, Mills P, et al. Budesonide versus prednisolone: effect on bone mineral density in patients with ileo-cecal Crohn’s disease [abstract]. Am J Gastroenterol 2002; 97: S272

    Article  Google Scholar 

  79. Florin TH, Graffner H, Nilsson LG, et al. Treatment of joint pain in Crohn’s patients with budesonide controlled ileal release. Clin Exp Pharmacol Physiol 2000; 27: 295–8

    Article  PubMed  CAS  Google Scholar 

  80. Rodrigues CA, Nabi EM, Spiliadis C, et al. Prednisolone absorption in inflammatory bowel disease: correlation with anatomical site and extent. Aliment Pharmacol Ther 1987; 1: 391–9

    Article  PubMed  CAS  Google Scholar 

  81. Shaffer JA, Williams SE, Turnberg LA, et al. Absorption of prednisolone in patients with Crohn’s disease. Gut 1983; 24: 182–6

    Article  PubMed  CAS  Google Scholar 

  82. Tanner AR, Halliday JW, Powell LW. Serum prednisolone levels in Crohn’s disease and coeliac disease following oral prednisolone administration. Digestion 1981; 21: 310–5

    Article  PubMed  CAS  Google Scholar 

  83. Faure C, Andre J, Pelatan C, et al. Pharmacokinetics of intravenous methylprednisolone and oral prednisone in paediatric patients with inflammatory bowel disease during the acute phase and in remission. Eur J Clin Pharmacol 1998; 54: 555–60

    Article  PubMed  CAS  Google Scholar 

  84. Schoon EJ, Wolffenbuttel BHR, Stockbrugger RW. Osteoporosis as a risk in inflammatory bowel disease. Drugs Today 1999; 35 Suppl. A: 17–28

    Google Scholar 

  85. Dear KL, Compston JE, Hunter JO. Treatments for Crohn’s disease that minimise steroid doses are associated with a reduced risk of osteoporosis. Clin Nutr 2001; 20: 541–6

    Article  PubMed  CAS  Google Scholar 

  86. Ferguson A, Campieri M, Doe W, et al. Oral budesonide as maintenance therapy in Crohn’s disease: results of a 12-month study. Global Budesonide Study Group. Aliment Pharmacol Ther 1998; 12: 175–83

    Article  PubMed  CAS  Google Scholar 

  87. Löfberg R, Rutgeerts P, Malchow H, et al. Budesonide prolongs time to relapse in ileal and ileocaecal Crohn’s disease: a placebo controlled one year study. Gut 1996; 39: 82–6

    Article  PubMed  Google Scholar 

  88. Greenberg GR, Feagan BG, Martin F, et al. Oral budesonide as maintenance treatment for Crohn’s disease: a placebo-controlled, dose-ranging study. Canadian Inflammatory Bowel Disease Study Group. Gastroenterology 1996; 110: 45–51

    Article  PubMed  CAS  Google Scholar 

  89. Feagan BG. Crohn’s disease: budesonide therapy for maintenance of remission. Res Clin Forums 1998; 20: 19–25

    Google Scholar 

  90. Gross V, Andus T, Ecker KW, et al. Low dose oral pH modified release budesonide for maintenance of steroid induced remission in Crohn’s disease. The Budesonide Study Group. Gut 1998; 42: 493–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Edsbäcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edsbäcker, S., Andersson, T. Pharmacokinetics of Budesonide (Entocort™ EC) Capsules for Crohn’s Disease. Clin Pharmacokinet 43, 803–821 (2004). https://doi.org/10.2165/00003088-200443120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443120-00003

Keywords

Navigation